Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene electrodes for organic solar cells

The structure of graphene, a flexible material made of carbon atoms arranged in a layer just one atom thick, is represented in this diagram. Graphic: Christine Daniloff
The structure of graphene, a flexible material made of carbon atoms arranged in a layer just one atom thick, is represented in this diagram. Graphic: Christine Daniloff

Abstract:
Researchers identify technique that could make a new kind of solar photovoltaic panel practical.

By David L. Chandler, MIT News Office

Graphene electrodes for organic solar cells

Cambridge, MA | Posted on January 7th, 2011

A promising approach for making solar cells that are inexpensive, lightweight and flexible is to use organic (that is, carbon-containing) compounds instead of expensive, highly purified silicon. But one stubborn problem has slowed the development of such cells: Researchers have had a hard time coming up with appropriate materials for the electrodes to carry the current to and from the cells. Specifically, it has been hard to make electrodes using materials that can match the organic cells' flexibility, transparency and low cost.

The standard material used so far for these electrodes is indium-tin-oxide, or ITO. But indium is expensive and relatively rare, so the search has been on for a suitable replacement. Now, a team of MIT researchers has come up with a practical way of using a possible substitute made from inexpensive and ubiquitous carbon. The proposed material is graphene, a form of carbon in which the atoms form a flat sheet just one atom thick, arranged in a chicken-wire-like formation.

An analysis of how to use graphene as an electrode for such solar cells was published on Dec. 17 in the journal Nanotechnology, in a paper by MIT professors Jing Kong and Vladimir Bulović along with two of their students and a postdoctoral researcher.

Graphene is transparent, so that electrodes made from it can be applied to the transparent organic solar cells without blocking any of the incoming light. In addition, it is flexible, like the organic solar cells themselves, so it could be part of installations that require the panel to follow the contours of a structure, such as a patterned roof. ITO, by contrast, is stiff and brittle.

The biggest problem with getting graphene to work as an electrode for organic solar cells has been getting the material to adhere to the panel. Graphene repels water, so typical procedures for producing an electrode on the surface by depositing the material from a solution won't work.

The team tried a variety of approaches to alter the surface properties of the cell or to use solutions other than water to deposit the carbon on the surface, but none of these performed well, Kong says. But then they found that "doping" the surface — that is, introducing a set of impurities into the surface — changed the way it behaved, and allowed the graphene to bond tightly. As a bonus, it turned out the doping also improved the material's electrical conductivity.

While the specific characteristics of the graphene electrode differ from those of the ITO it would replace, its overall performance in a solar cell is very similar, Kong says. And the flexibility and light weight of organic solar cells with graphene electrodes could open up a variety of different applications that would not be possible with today's conventional silicon-based solar panels, she says. For example, because of their transparency they could be applied directly to windows without blocking the view, and they could be applied to irregular wall or rooftop surfaces. In addition, they could be stacked on top of other solar panels, increasing the amount of power generated from a given area. And they could even be folded or rolled up for easy transportation.

While this research looked at how to adapt graphene to replace one of the two electrodes on a solar panel, Kong and her co-workers are now trying to adapt it to the other electrode as well. In addition, widespread use of this technology will require new techniques for large-scale manufacturing of graphene — an area of very active research. The ongoing work has been funded by the Eni-MIT Alliance Solar Frontiers Center and an NSF research fellowship.

Peter Peumans, an assistant professor of electrical engineering at Stanford University, who was not involved in this study, says organic solar cells will probably become practical only with the development of transparent electrode technology that is both cheaper and more robust than conventional metal oxides. Other materials are being studied as possible substitutes, he says, but this work represents "very important progress" toward making graphene a credible replacement transparent electrode.

"Other groups had already shown that graphene exhibits good combinations of transparency and sheet resistance, but no one was able to achieve a performance with graphene electrodes that matches that of devices on conventional metal oxide (ITO) electrodes," Peumans says. "This work is a substantial push toward making graphene a leading candidate."

####

For more information, please click here

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Discoveries

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Announcements

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Energy

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

Solar/Photovoltaic

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic