Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Graphene electrodes for organic solar cells

The structure of graphene, a flexible material made of carbon atoms arranged in a layer just one atom thick, is represented in this diagram. Graphic: Christine Daniloff
The structure of graphene, a flexible material made of carbon atoms arranged in a layer just one atom thick, is represented in this diagram. Graphic: Christine Daniloff

Abstract:
Researchers identify technique that could make a new kind of solar photovoltaic panel practical.

By David L. Chandler, MIT News Office

Graphene electrodes for organic solar cells

Cambridge, MA | Posted on January 7th, 2011

A promising approach for making solar cells that are inexpensive, lightweight and flexible is to use organic (that is, carbon-containing) compounds instead of expensive, highly purified silicon. But one stubborn problem has slowed the development of such cells: Researchers have had a hard time coming up with appropriate materials for the electrodes to carry the current to and from the cells. Specifically, it has been hard to make electrodes using materials that can match the organic cells' flexibility, transparency and low cost.

The standard material used so far for these electrodes is indium-tin-oxide, or ITO. But indium is expensive and relatively rare, so the search has been on for a suitable replacement. Now, a team of MIT researchers has come up with a practical way of using a possible substitute made from inexpensive and ubiquitous carbon. The proposed material is graphene, a form of carbon in which the atoms form a flat sheet just one atom thick, arranged in a chicken-wire-like formation.

An analysis of how to use graphene as an electrode for such solar cells was published on Dec. 17 in the journal Nanotechnology, in a paper by MIT professors Jing Kong and Vladimir Buloviæ along with two of their students and a postdoctoral researcher.

Graphene is transparent, so that electrodes made from it can be applied to the transparent organic solar cells without blocking any of the incoming light. In addition, it is flexible, like the organic solar cells themselves, so it could be part of installations that require the panel to follow the contours of a structure, such as a patterned roof. ITO, by contrast, is stiff and brittle.

The biggest problem with getting graphene to work as an electrode for organic solar cells has been getting the material to adhere to the panel. Graphene repels water, so typical procedures for producing an electrode on the surface by depositing the material from a solution won't work.

The team tried a variety of approaches to alter the surface properties of the cell or to use solutions other than water to deposit the carbon on the surface, but none of these performed well, Kong says. But then they found that "doping" the surface — that is, introducing a set of impurities into the surface — changed the way it behaved, and allowed the graphene to bond tightly. As a bonus, it turned out the doping also improved the material's electrical conductivity.

While the specific characteristics of the graphene electrode differ from those of the ITO it would replace, its overall performance in a solar cell is very similar, Kong says. And the flexibility and light weight of organic solar cells with graphene electrodes could open up a variety of different applications that would not be possible with today's conventional silicon-based solar panels, she says. For example, because of their transparency they could be applied directly to windows without blocking the view, and they could be applied to irregular wall or rooftop surfaces. In addition, they could be stacked on top of other solar panels, increasing the amount of power generated from a given area. And they could even be folded or rolled up for easy transportation.

While this research looked at how to adapt graphene to replace one of the two electrodes on a solar panel, Kong and her co-workers are now trying to adapt it to the other electrode as well. In addition, widespread use of this technology will require new techniques for large-scale manufacturing of graphene — an area of very active research. The ongoing work has been funded by the Eni-MIT Alliance Solar Frontiers Center and an NSF research fellowship.

Peter Peumans, an assistant professor of electrical engineering at Stanford University, who was not involved in this study, says organic solar cells will probably become practical only with the development of transparent electrode technology that is both cheaper and more robust than conventional metal oxides. Other materials are being studied as possible substitutes, he says, but this work represents "very important progress" toward making graphene a credible replacement transparent electrode.

"Other groups had already shown that graphene exhibits good combinations of transparency and sheet resistance, but no one was able to achieve a performance with graphene electrodes that matches that of devices on conventional metal oxide (ITO) electrodes," Peumans says. "This work is a substantial push toward making graphene a leading candidate."

####

For more information, please click here

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Academic/Education

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Global 450 consortium announces new general manager of internal operations: TSMC’s Cheng-Chung Chien Receives Unanimous Support, Brings History of Innovation and Efficiency to Global Consortium of Companies Driving Industry Transition to 450mm Wafer Technology March 26th, 2014

NanoTecNexus to Host "Chemistry of Wine" Fundraiser in Support of STEM Education - Collaborations Key to Success - March 20th, 2014

Nanotubes/Buckyballs

Effects of Carbon Nanotubes Studied on Pregnant Mothers April 12th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Scientists Succeed in Simultaneous Determination of Acetaminophen, Codeine in Drug Samples April 9th, 2014

Rebar technique strengthens case for graphene: Rice University lab makes hybrid nanotube-graphene material that promises to simplify manufacturing April 7th, 2014

Discoveries

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Announcements

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Energy

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Solar/Photovoltaic

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Shiny quantum dots brighten future of solar cells: Photovoltaic solar-panel windows could be next for your house April 14th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE