Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Printed Electronics - Predictions for 2011

Abstract:
In this article, we examine what to expect for 2011. To do that, we must understand the spectacular successes of the recent past as well as the failures. This has often been an industry with poor business planning and marketing. For example, in e-readers, Plastic Logic belatedly realised it could not meet Apple and Amazon head on and it said it would create a professional sector but such a niche may never exist. It failed to launch a product anyway. Those developing printed organic and inorganic flexible solar cells, most of which had life of no more than five years, obsessed about replacing power stations by meeting "grid parity" efficiency when the potential lay in consumer goods, military, healthcare and media.

By Raghu Das, CEO, IDTechEx

Printed Electronics - Predictions for 2011

Cambridge, UK | Posted on January 5th, 2011

Lessons from failure

Frequently, participants tried to run before they could walk or at least chose objectives that were too ambitious for the level of investment available. For example, Microemissive Displays, OLED-T and many other Organic Light Emitting Display companies are no more. Those making printed antennas and keyboards prospered. Some have simply failed to meet the price-performance points necessary for market entry. For example, no one has taken a meaningful order for the long promised printed organic transistors, despite transistors being the engine of most electronics. That has had a severe knock on effect. For example, the printed organic memory of Thin Film Electronics AB and many printed sensors cannot fulfil their primary market potential without them.

Lessons from success

There are important lessons from the recent successes too. The Amazon Kindle™ e-reader is the antidote to phones and computers we cannot read in sunshine. It is partly printed with an excellent route to further weight and cost reduction using more printing. It replaces books. The Apple i-Pad™ is not killing the Kindle because it is not simply an e-reader and it is in color. You need a spectacularly better product in the eyes of potential users to compete effectively with either of these powerful global brands with their unsurpassed routes to market. An example would be a color e-readers tightly rolled into your mobile phone but no such product is in prospect for 2011.

Historical event - replacing silicon chips

Certain small orders for printed and partly printed electronics in 2010 were of deep significance. For example, the Kovio order for disposable electronic train tickets in Los Angeles saw formidable printed nano silicon electronics in the form of over 1000 transistors printed by ink jet and screen printing onto stainless steel foil. Being compatible with the world's most popular RFID specification ISO 14443 which was designed for silicon chips, this analog-digital circuit was a tour de force announcing to the world that a huge variety of the simpler integrated circuits can
now be replaced by lower cost, more flexible and more robust printing albeit on stainless steel foil because of the high temperature anneal currently required.

Promotional

Equally significant was Dai Nippon Printing in Japan taking its first orders for multifunctional posters on the Tokyo Metro incorporating printed animated OLED and ac electroluminescent technology powered by printed organic photovoltaics. In addition, trials by Toppan Forms in Japan of interactive posters have been successful. These involved sound, activated by touching, printed ac electroluminescent and electrophoretic displays and printed organic photovoltaics for power. At a stroke, the world's existing posters, packaging and point of display material are rendered boring, relatively ineffective and an embarrassment. It is equivalent to the arrival of television: if you just make radios watch out.

Military

2010 also saw the US Air Force committing very serious money to vehicles made possible by flexible photovoltaics, notably unmanned upper atmosphere surveillance aircraft and dirigibles covered with the stuff. One order exceeded $500 million. The benefits include light weight and flexibility. You do not put glass sheets on a balloon.

Healthcare

Much smaller sums were committed to buying printed electronic products for healthcare, with ongoing business in electronic tamper evidence and entirely printed electric skin patches. However, in the background, a great deal of work was going on to develop electronic healthcare disposables for testing and drug administration.

Forecasts

All of which brings us to 2011. Many companies that have got the message of starting with the easier printed electronics will launch simple devices based on printed diodes and conductive patterns etc. The old idea of printing a transparent conductive layer not with expensive, clever chemicals but with fine metal patterns will re-emerge and gain first major orders. Simple ink stripe RFID using low cost printed metals will gain market share. Printable copper inks will start to sell well. Novacentrix Pulseforge ™ which anneals high temperature electronic inks on low temperature substrates will be widely deployed.

Expect one of the new electric cars to incorporate largely printed ceiling and dashboard control clusters saving 10 to 40% of cost, weight and space in 2011 and improving reliability and weather proofing. Less certain is whether the lowest cost printed displays, the electrochromic ones, will overcome barriers to major market entry. Some of our clients cite unappealing appearance and lack of low cost drive circuits. The limited life is not a problem for most envisaged applications.

Of course, life is of great importance in many potential applications of printed electronics and the 2-3 years of printed organic photovoltaics and five years for DSSC photovoltaics will be inadequate in some cases. For example car companies and the military demand 15 years and 20 years are needed for photovoltaics on houses or ships. Enter flexible printed copper indium gallium diselenide CIGS photovoltaics where Nanosolar and maybe others will make first major deliveries in 2011. Lifetime of these initial products are unclear as yet but long life is in prospect. Equally desirable is transparent flexible printed electronics demanded by all market sectors. The kingpins here will be the commercialisation of transparent photovoltaics, transistor circuits and batteries but, unfortunately, these are unlikely to be in major production by the end of 2011.

The tiny number of imaginative product designers familiar with printed electronics will continue to spring surprises. Expect yet more animated and interactive paper magazines in the tradition of the E-ink Esquire edition in 2008 and the color LCD with sound in an edition of Entertainment Age in 2009. We shall certainly see printed electronics in more toys, novelties, apparel and healthcare disposables.

The annual IDTechEx event Printed Electronics Europe - which will be held in Dusseldorf, Germany on April 5-6, will cover all these topics. In particular, the event features Demonstration Street - where you can see working printed electronics products in action. Register now and save with the early bird rate - see www.IDTechEx.com/peEurope.

####

For more information, please click here

Contacts:
Cara Harrington

Copyright © IDTechEx

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Possible Futures

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Chip Technology

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Nanoelectronics

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Military

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Energy

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Automotive/Transportation

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

Events/Classes

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Oxford Instruments Asylum Research and Microscopy and Analysis Present the Webinar: “Video-Rate Atomic Force Microscopy Enables New Research Opportunities” May 9th, 2017

Graphene flagship steers towards higher technology readiness level May 4th, 2017

Solar/Photovoltaic

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project