Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > EU funds the ICT-FET Integrated Project AtMol to explore Atomic scale and single Molecule logic gate technologies

Abstract:
On January 1st, 2011, the European project AtMol will be officially launched for 4 years. Regrouping the scientific and technological talents of 10 research groups in Europe working together with the IMRE Institute from A*STAR (Singapore), AtMol is to open the atomic scale era of molecular computing integrating state of the art atomic scale technologies, new quantum architectures with multi-scale interconnection and packaging techniques for a single molecule to compute and be packaged into a molecular chip.

By Antonio Correia

EU funds the ICT-FET Integrated Project AtMol to explore Atomic scale and single Molecule logic gate technologies

Madrid | Posted on December 22nd, 2010

AtMol had already established a detail process flow for fabricating the molecular chip i.e. a single calculating molecule unit connected via external nano-electrodes to preserve its integrity down to the atomic level even after its encapsulation. On a surface, the required logic functions are embedded in a single molecule but can also be implanted within an atomic scale circuit. AtMol will explore and demonstrate how the combination of classical and quantum information inside the same atomic scale circuit increases the computing power of the final intramolecular logic circuit. Atomic scale logics will be constructed using atom-by-atom manipulation, on-surface chemistry, and lab tested using a unique UHV transfer printing technology.

The AtMol research agenda necessitates the state-of-the-art UHV atomic scale interconnection machines comprising, a UHV surface preparation chamber, a UHV transfer printing device, an LT-UHV-STM (or a UHV-NC-AFM) for atomic scale construction, a FIM atomic scale tip apex fabrication device and a multi-probe system with its companion SEM or optical navigation microscope. At the starting of AtMol, only three of such machines exist worldwide and they are each housed within AtMol laboratories (Toulouse, Krakow and Singapore). They will be used to interconnect molecule logic gates one-by-one in a planar atomic scale multi-pad approach on the top, atomically reconstructed, surface of the wafer. For this molecular chip, the back face of the wafer will incorporate nano-to-micro-scale interconnections using nanofabricated vias. The AtMol patented hybrid micro-nano back interconnect approach will enable the full packaging of the molecular chip preserving the surface atomic scale precision of the design.

The AtMol Integrated Project and its related "dissemination & training" activities are going to provide both academic researchers and industry engineers access to the tools needed to be at the forefront of the atomic scale technology revolution, a revolution beyond nanotechnology.

AtMol Partners: CEMES-CNRS (Toulouse, France), LETI-CEA (Grenoble, France), Phantoms Foundation (Madrid, Spain), ICIQ (Tarragona, Spain), CSIC (Barcelona, Spain), Fritz Haber Institute (Berlin, Germany), Humboldt University (Berlin, Germany), Dresden Technical University (Dresden, Germany), Nottingham University (Nottingham, UK), Jagiellonian University (Krakow, Poland), IMRE A*STAR (Singapore).

ICT-FET ÅMOL-IT proactive program WEB site cordis.europa.eu/fp7/ict/fet-proactive/amolit_en.html

####

About Phantoms Foundation
The Phantoms Foundation focuses its activities on Nanotechnology and is a key actor in structuring and fostering European Excellence and enhancing collaborations in this field. Our goals are i) to provide an innovative platform for dissemination, transfer and transformation of basic nanoscience knowledge; and ii) to strengthen interdisciplinary research in nanoscience and nanotechnology and catalyse collaboration among international research groups and favour the emergence of new joint project proposals.

About AtMol
AtMol will establish comprehensive process flow for fabricating a molecular chip, i.e. a molecular processing unit comprising a single molecule connected to external mesoscopic electrodes with atomic scale precision and preserving the integrity of the gates down to the atomic level after the encapsulation. Logic functions will be incorporated in a single molecule gate, or performed by a single surface atomic scale circuit, via either a quantum Hamiltonian or a semi-classical design approach. AtMol will explore and demonstrate how the combination of classical and quantum information inside the same atomic scale circuit increases the computing power of the final logic circuit. Atomic scale logic gates will be constructed using atom-by-atom manipulation, on-surface chemistry, and unique UHV transfer printing technology.

For more information, please click here

Contacts:
Prof. Christian Joachim
Project Coordinator


Dr. Antonio Correia
Dissemination

Copyright © Phantoms Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Chip Technology

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Quantum Computing

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Nanoelectronics

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

Tungsten offers nano-interconnects a path of least resistance: Crystalline tungsten shows insight and promise in addressing the challenges of electrical interconnects that have high resistivity at the nanoscale October 4th, 2017

Announcements

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Alliances/Trade associations/Partnerships/Distributorships

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

GLOBALFOUNDRIES and Soitec Enter Into Long-term Supply Agreement on FD-SOI Wafers: Strategic milestone to help guarantee a secure, high-volume supply of FD-SOI technology September 20th, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project