Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Grant to SDSU researcher will address congestive heart failure

John M. Robinson MD, PhD., Assistant Professor
John M. Robinson MD, PhD., Assistant Professor

Abstract:
A grant of about $1.8 million over five years will help scientists better understand congestive heart failure, a condition that affects 5.7 million Americans annually.

Grant to SDSU researcher will address congestive heart failure

Brookings, SD | Posted on December 21st, 2010

John Robinson, a medical doctor and biophysicist at South Dakota State University, has been awarded the funding by the Heart, Lung and Blood Institute of the National Institutes of Health. The research could supply new knowledge about heart failure that could lead to new treatment strategies.

The risk of congestive heart failure increases sharply with age, doubling every 10 years among older adults. At younger ages, blacks are disproportionately affected compared to whites by a ratio of 20 to 1.

Robinson, a member of the Department of Chemistry and Biochemistry in SDSU's College of Arts and Sciences, is especially interested in heart failure in connection with impaired function of the myofilament, a protein assembly regulated by calcium that makes the heart contract.

"The myofilament is the fundamental unit that allows the heart to generate force. Your heart has to beat and relax about once every second," Robinson said. "These periods of contraction and relaxation are regulated by the levels of calcium inside cells of the heart. The myofilament is a calcium-sensitive switch that generates force when calcium binds to it."

However, scientists don't fully understand how the myofilament functions or what goes wrong when it doesn't work properly. Robinson said that's because those processes are taking place at the nanoscale, or roughly at a level 100 to 1,000 times smaller than can be seen by using a conventional microscope.

"Switching in the nanoscale is very different from switching in our world. If I turn a light switch on, it stays on," Robinson said. "What we're seeing with protein switches is that just because calcium binds to it, it will not necessarily turn on. It's sort of error-prone. All of the switching is done by heat random collisions with water is what drives all of this."

Robinson said a revolution in instrumentation is making it possible to unravel such processes, some of which have been studied for decades. Robinson is part of the SDSU-based Center for Biological Control and Analysis by Applied Photonics, or BCAAP. The center is made up of researchers who use light as one of the tools either to control biochemical processes or, in this case, to analyze biochemical processes.

Robinson's laboratory uses a technique called Fluorescence Resonance Energy Transfer, or FRET, to study proteins at the nanoscale. His FRET measurements are at the "single molecule" level, studying myofilaments one at a time.

Robinson's five-year NIH project will work to establish what molecular interactions are taking place as the myofilament contracts; and to understand the mechanisms at work when myofilaments' sensitivity to calcium is altered.

####

For more information, please click here

Copyright © South Dakota State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Academic/Education

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

Nanomedicine

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Tools

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Nanobiotechnology

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic