Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Grant to SDSU researcher will address congestive heart failure

John M. Robinson MD, PhD., Assistant Professor
John M. Robinson MD, PhD., Assistant Professor

Abstract:
A grant of about $1.8 million over five years will help scientists better understand congestive heart failure, a condition that affects 5.7 million Americans annually.

Grant to SDSU researcher will address congestive heart failure

Brookings, SD | Posted on December 21st, 2010

John Robinson, a medical doctor and biophysicist at South Dakota State University, has been awarded the funding by the Heart, Lung and Blood Institute of the National Institutes of Health. The research could supply new knowledge about heart failure that could lead to new treatment strategies.

The risk of congestive heart failure increases sharply with age, doubling every 10 years among older adults. At younger ages, blacks are disproportionately affected compared to whites by a ratio of 20 to 1.

Robinson, a member of the Department of Chemistry and Biochemistry in SDSU's College of Arts and Sciences, is especially interested in heart failure in connection with impaired function of the myofilament, a protein assembly regulated by calcium that makes the heart contract.

"The myofilament is the fundamental unit that allows the heart to generate force. Your heart has to beat and relax about once every second," Robinson said. "These periods of contraction and relaxation are regulated by the levels of calcium inside cells of the heart. The myofilament is a calcium-sensitive switch that generates force when calcium binds to it."

However, scientists don't fully understand how the myofilament functions or what goes wrong when it doesn't work properly. Robinson said that's because those processes are taking place at the nanoscale, or roughly at a level 100 to 1,000 times smaller than can be seen by using a conventional microscope.

"Switching in the nanoscale is very different from switching in our world. If I turn a light switch on, it stays on," Robinson said. "What we're seeing with protein switches is that just because calcium binds to it, it will not necessarily turn on. It's sort of error-prone. All of the switching is done by heat random collisions with water is what drives all of this."

Robinson said a revolution in instrumentation is making it possible to unravel such processes, some of which have been studied for decades. Robinson is part of the SDSU-based Center for Biological Control and Analysis by Applied Photonics, or BCAAP. The center is made up of researchers who use light as one of the tools either to control biochemical processes or, in this case, to analyze biochemical processes.

Robinson's laboratory uses a technique called Fluorescence Resonance Energy Transfer, or FRET, to study proteins at the nanoscale. His FRET measurements are at the "single molecule" level, studying myofilaments one at a time.

Robinson's five-year NIH project will work to establish what molecular interactions are taking place as the myofilament contracts; and to understand the mechanisms at work when myofilaments' sensitivity to calcium is altered.

####

For more information, please click here

Copyright © South Dakota State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

New Nanodrug Produced in Iran from Milk Thistle May 4th, 2015

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Making robots more human April 29th, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Academic/Education

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

SUNY Poly and Sematech Announce Air Products Joins Cutting-Edge CMP Center At Albany Nanotech Complex April 28th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Nanomedicine

New Nanodrug Produced in Iran from Milk Thistle May 4th, 2015

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Polymeric Nanocarriers Improve Performance of Anticancer Drugs April 30th, 2015

A phone with the ultimate macro feature: New attachment turns a smartphone into a microscope that can image and size DNA molecules 50,000 times thinner than a human hair April 29th, 2015

Announcements

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

New Nanodrug Produced in Iran from Milk Thistle May 4th, 2015

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Tools

Oxford Instruments announces winners of the 2015 Sir Martin Wood Science Prize for China May 2nd, 2015

Nanometrics to Present at the B. Riley & Co. 16th Annual Investor Conference May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Nanobiotechnology

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

A phone with the ultimate macro feature: New attachment turns a smartphone into a microscope that can image and size DNA molecules 50,000 times thinner than a human hair April 29th, 2015

An effective, biodegradable and broad-spectrum nanoparticles as potent antibacterial agents April 28th, 2015

Weighing -- and imaging -- molecules one at a time April 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project