Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Grant to SDSU researcher will address congestive heart failure

John M. Robinson MD, PhD., Assistant Professor
John M. Robinson MD, PhD., Assistant Professor

Abstract:
A grant of about $1.8 million over five years will help scientists better understand congestive heart failure, a condition that affects 5.7 million Americans annually.

Grant to SDSU researcher will address congestive heart failure

Brookings, SD | Posted on December 21st, 2010

John Robinson, a medical doctor and biophysicist at South Dakota State University, has been awarded the funding by the Heart, Lung and Blood Institute of the National Institutes of Health. The research could supply new knowledge about heart failure that could lead to new treatment strategies.

The risk of congestive heart failure increases sharply with age, doubling every 10 years among older adults. At younger ages, blacks are disproportionately affected compared to whites by a ratio of 20 to 1.

Robinson, a member of the Department of Chemistry and Biochemistry in SDSU's College of Arts and Sciences, is especially interested in heart failure in connection with impaired function of the myofilament, a protein assembly regulated by calcium that makes the heart contract.

"The myofilament is the fundamental unit that allows the heart to generate force. Your heart has to beat and relax about once every second," Robinson said. "These periods of contraction and relaxation are regulated by the levels of calcium inside cells of the heart. The myofilament is a calcium-sensitive switch that generates force when calcium binds to it."

However, scientists don't fully understand how the myofilament functions or what goes wrong when it doesn't work properly. Robinson said that's because those processes are taking place at the nanoscale, or roughly at a level 100 to 1,000 times smaller than can be seen by using a conventional microscope.

"Switching in the nanoscale is very different from switching in our world. If I turn a light switch on, it stays on," Robinson said. "What we're seeing with protein switches is that just because calcium binds to it, it will not necessarily turn on. It's sort of error-prone. All of the switching is done by heat random collisions with water is what drives all of this."

Robinson said a revolution in instrumentation is making it possible to unravel such processes, some of which have been studied for decades. Robinson is part of the SDSU-based Center for Biological Control and Analysis by Applied Photonics, or BCAAP. The center is made up of researchers who use light as one of the tools either to control biochemical processes or, in this case, to analyze biochemical processes.

Robinson's laboratory uses a technique called Fluorescence Resonance Energy Transfer, or FRET, to study proteins at the nanoscale. His FRET measurements are at the "single molecule" level, studying myofilaments one at a time.

Robinson's five-year NIH project will work to establish what molecular interactions are taking place as the myofilament contracts; and to understand the mechanisms at work when myofilaments' sensitivity to calcium is altered.

####

For more information, please click here

Copyright © South Dakota State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Compact, Low Cost, Accurate: Mini Positioning Stages, by PI June 30th, 2015

NEI Announces the Issuance of Multiple Patents on Self-Healing & Superhydrophobic Coatings June 30th, 2015

Philips Introduces Quantum Dot TV with Color IQ™ Technology from QD Vision: Manufacturer is first to offer quantum dot displays for both TVs and monitors June 30th, 2015

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Academic/Education

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

Nanomedicine

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Announcements

BASF and Fraunhofer IPMS-CNT jointly develop electronic materials June 30th, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Tools

Compact, Low Cost, Accurate: Mini Positioning Stages, by PI June 30th, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

How Graphene–based Nanomaterials and Films Revolutionize Science Explained in July 9 Webinar Hosted by Park Systems June 29th, 2015

Nanobiotechnology

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

Researchers first to show that Saharan silver ants can control electromagnetic waves over an extremely broad range of the electromagnetic spectrum—findings may lead to biologically inspired coatings for passive radiative cooling of objects June 19th, 2015

Cellulose from wood can be printed in 3-D June 17th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project