Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Grant to SDSU researcher will address congestive heart failure

John M. Robinson MD, PhD., Assistant Professor
John M. Robinson MD, PhD., Assistant Professor

Abstract:
A grant of about $1.8 million over five years will help scientists better understand congestive heart failure, a condition that affects 5.7 million Americans annually.

Grant to SDSU researcher will address congestive heart failure

Brookings, SD | Posted on December 21st, 2010

John Robinson, a medical doctor and biophysicist at South Dakota State University, has been awarded the funding by the Heart, Lung and Blood Institute of the National Institutes of Health. The research could supply new knowledge about heart failure that could lead to new treatment strategies.

The risk of congestive heart failure increases sharply with age, doubling every 10 years among older adults. At younger ages, blacks are disproportionately affected compared to whites by a ratio of 20 to 1.

Robinson, a member of the Department of Chemistry and Biochemistry in SDSU's College of Arts and Sciences, is especially interested in heart failure in connection with impaired function of the myofilament, a protein assembly regulated by calcium that makes the heart contract.

"The myofilament is the fundamental unit that allows the heart to generate force. Your heart has to beat and relax about once every second," Robinson said. "These periods of contraction and relaxation are regulated by the levels of calcium inside cells of the heart. The myofilament is a calcium-sensitive switch that generates force when calcium binds to it."

However, scientists don't fully understand how the myofilament functions or what goes wrong when it doesn't work properly. Robinson said that's because those processes are taking place at the nanoscale, or roughly at a level 100 to 1,000 times smaller than can be seen by using a conventional microscope.

"Switching in the nanoscale is very different from switching in our world. If I turn a light switch on, it stays on," Robinson said. "What we're seeing with protein switches is that just because calcium binds to it, it will not necessarily turn on. It's sort of error-prone. All of the switching is done by heat random collisions with water is what drives all of this."

Robinson said a revolution in instrumentation is making it possible to unravel such processes, some of which have been studied for decades. Robinson is part of the SDSU-based Center for Biological Control and Analysis by Applied Photonics, or BCAAP. The center is made up of researchers who use light as one of the tools either to control biochemical processes or, in this case, to analyze biochemical processes.

Robinson's laboratory uses a technique called Fluorescence Resonance Energy Transfer, or FRET, to study proteins at the nanoscale. His FRET measurements are at the "single molecule" level, studying myofilaments one at a time.

Robinson's five-year NIH project will work to establish what molecular interactions are taking place as the myofilament contracts; and to understand the mechanisms at work when myofilaments' sensitivity to calcium is altered.

####

For more information, please click here

Copyright © South Dakota State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Announcements

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Tools

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Nanobiotechnology

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project