Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UCSB Scientists Demonstrate Biomagnification of Nanomaterials in Simple Food Chain

The quantum dot-tainted bacteria stop digestion in the protozoan, and food vacuoles with undigested material accumulate, seen in the right image. This is in contrast to the normal condition of protozoa eating untreated bacteria, seen in the left image.
The quantum dot-tainted bacteria stop digestion in the protozoan, and food vacuoles with undigested material accumulate, seen in the right image. This is in contrast to the normal condition of protozoa eating untreated bacteria, seen in the left image.

Abstract:
An interdisciplinary team of researchers at UC Santa Barbara has produced a groundbreaking study of how nanoparticles are able to biomagnify in a simple microbial food chain.

UCSB Scientists Demonstrate Biomagnification of Nanomaterials in Simple Food Chain

Santa Barbara, CA | Posted on December 20th, 2010

"This was a simple scientific curiosity," said Patricia Holden, professor in UCSB's Bren School of Environmental Science & Management and the corresponding author of the study, published in an early online edition of the journal Nature Nanotechnology. "But it is also of great importance to this new field of looking at the interface of nanotechnology and the environment."

Holden's co-authors from UCSB include Eduardo Orias, research professor of genomics with the Department of Molecular, Cellular and Developmental Biology; Galen Stucky, professor of chemistry and biochemistry, and materials; and graduate students, postdoctoral scholars, and staff researchers Rebecca Werlin, Randy Mielke, John Priester, and Peter Stoimenov. Other co-authors are Stephan Krämer, from the California Nanosystems Institute, and Gary Cherr and Susan Jackson, from the UC Davis Bodega Marine Laboratory.

The research was partially funded by the U.S. Environmental Protection Agency (EPA) STAR Program, and by the UC Center for the Environmental Implications of Nanotechnology (UC CEIN), a $24 million collaboration based at UCLA, with researchers from UCSB, UC Davis, UC Riverside, Columbia
University, and other national and international partners. UC CEIN is funded by the National Science Foundation and the EPA.

According to Holden, a prior collaboration with Stucky, Stoimenov, Priester, and Mielke provided the foundation for this research. In that earlier study, the researchers observed that nanoparticles formed from cadmium selenide were entering certain bacteria (called Pseudomonas) and accumulating in them. "We already knew that the bacteria were internalizing these nanoparticles from our previous study," Holden said. "And we also knew that Ed (Orias) and Rebecca (Werlin) were working with a protozoan called Tetrahymena and nanoparticles. So we approached them and asked if they would be interested in a collaboration to evaluate how the protozoan predator is affected by the accumulated nanoparticles inside a bacterial prey." Orias and Werlin credit their interest in nanoparticle toxicity to earlier funding from and participation in the University of California
Toxic Substance Research & Training Program.

The scientists repeated the growth of the bacteria with quantum dots in the new study and and coupled it to a trophic transfer study - the study of the transfer of a compound from a lower to a higher level in a food chain by predation. "We looked at the difference to the predator as it was growing at the expense of different prey types - 'control' prey without any metals, prey that had been grown with a dissolved cadmium salt, and prey that had been grown with cadmium selenide quantum dots," Holden said.

What they found was that the concentration of cadmium increased in the transfer from bacteria to protozoa and, in the process of increasing concentration, the nanoparticles were substantially intact, with very little degradation. "We were able to measure the ratio of the cadmium to the selenium in particles that were inside the protozoa and see that it was substantially the same as in the original nanoparticles that had been used to feed the bacteria," Orias said.

The fact that the ratio of cadmium and selenide was preserved throughout the course of the study indicates that the nanoparticles were themselves biomagnified. "Biomagnification - the increase in concentration of cadmium as the tracer for nanoparticles from prey into predator - this is the first time this has been reported for nanomaterials in an aquatic environment, and furthermore involving microscopic life forms, which comprise the base of all food webs," Holden said.

An implication is that nanoparticles inside the protozoa could then be available to the next level of predators in the food chain, which could lead to broader ecological effects. "These protozoa are greatly enriched in nanoparticles because of feeding on quantum dot-laced bacteria," Hold said. "Because there were toxic effects on the protozoa in this study, there is a concern that there could also be toxic effects higher in the food chain, especially in aquatic environments."

One of the missions of UC CEIN is to try to understand the effects of nanomaterials in the environment, and how scientists can prevent any possible negative effects that might pose a threat to any form of life. "In this context, one might argue that if you could 'design out' whatever property of the quantum dots causes them to enter bacteria, then we could avoid this potential consequence," Holden said. "That would be a positive way of viewing a study like this. Now scientists can look back and say, 'How do we prevent this from happening?'"

####

For more information, please click here

Contacts:
George Foulsham
(805) 893-3071


Patricia Holden
(805) 893-3195


Eduardo Orias
(805) 893-3024

Copyright © UCSB

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Marine/Watercraft

Transparent gel-based robots can catch and release live fish: Made from hydrogel, robots may one day assist in surgical operations, evade underwater detection February 2nd, 2017

NIST-made 'sun and rain' used to study nanoparticle release from polymers October 5th, 2016

New material to revolutionize water proofing September 12th, 2016

Tracing barnacle's footprint August 19th, 2016

Preparing for Nano

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Durnham University's DEEPEN project comes to a close September 26th, 2012

Govt.-Legislation/Regulation/Funding/Policy

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Academic/Education

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Materials/Metamaterials

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Announcements

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Environment

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Safety-Nanoparticles/Risk management

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Quantum Dots/Rods

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Two electrons go on a quantum walk and end up in a qudit: Russian scientists find a way to reliably connect quantum elements December 13th, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project