Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Ostendo Announces Gallium Nitride substrate that enables LED With 2.5X Intensity

Abstract:
LEDs grown on Ostendo's semi-polar GaN achieve 2.5x the brightness of c-plane GaN based LEDs

Ostendo Announces Gallium Nitride substrate that enables LED With 2.5X Intensity

Carlsbad, CA & Oxfordshire, U.K. | Posted on December 16th, 2010

Ostendo Technologies, Inc. (Ostendo) and Technologies and Devices International, Inc. (TDI), part of the Oxford Instruments Group, are pleased to announce that LED structures grown on their semi-polar (11-22) GaN wafers have resulted in more than 2.5x the emission intensity of the c-plane GaN based LED structures.

Ostendo & TDI had entered into an Information Exchange Agreement with Palo Alto Research Center (PARC) in 2008, pursuant to which they agreed to make semi-polar GaN wafers available for PARC to grow LED and Laser Diode structures on the supplied wafers, and independently validate and report the achieved results. As part of their validation, PARC has grown MQW LED structure on our semi-polar GaN side-by-side with a reference c-plane LED structure in the same MOCVD run. Some of the key results verify the following:

- The LED structure grown on our semi-polar GaN achieved more than 2.5x more emission intensity than the reference LED structure grown on c-plane GaN

- Our semi-polar GaN allowed for higher indium (In) incorporation resulting in longer peak wavelength of ~25 nm for the structure grown.

Further findings of this collaboration has recently been published as a feature article titled "Semi-polar nitride surfaces and heterostructures" in the October 2010 issue of the prestigious Physica Status Solidi Magazine.

"This is an excellent validation of our work in the semi-polar GaN area for the last two and a half years as it verified the main advantage of our semi-polar GaN and should help encourage LED makers to start considering it for future LED brightness improvements" added Dr. Hussein S. El Ghoroury, CEO of Ostendo. "We are delighted that the production grade, semi-polar GaN wafers produced at TDI, which are as a result of research funded by Ostendo, has generated such encouraging results", comments Frazer Anderson, Business Development Director at Oxford Instruments, "As a business, Oxford Instruments aims to use innovation to turn smart science into world class products, and this joint initiative with Ostendo and PARC meets our customers' needs through the advanced technology our companies have available."

Earlier this year Ostendo and TDI announced the availability of semi-polar (11-22) GaN layer on sapphire substrate wafers using Ostendo's proprietary design and TDI's proprietary Hydride Vapor Phase Epitaxy (HVPE) technology. This joint development now provides the opportunity to leading High Brightness Light Emitting Diode (HBLED) and Laser Diode developers to increase optical efficiency significantly compared with structures grown on c-plane GaN substrates.

####

About Ostendo
Ostendo Technologies Inc. (Ostendo) is a developer of Solid State Light (SSL) based display technologies and products for commercial and consumer markets with the objective to achieve efficiencies and cost effectiveness at the material, the device and the system levels. Ostendo’s enabling technologies support products that are disruptive in their individual marketplaces.

About Oxford Instruments - Technologies and Devices International, Inc. (TDI)
TDI, a wholly owned subsidiary of Oxford Instruments, is a world leader in the development of Hydride Vapor Phase Epitaxy (HVPE) processes and techniques for the production of novel compound semiconductors such as GaN, AlN, AlGaN, InN, InGaN. Using TDI HVPE technology, Oxford Instruments can produce templates for applications such as High Brightness Light Emitting Diodes (HBLEDs), Laser Diodes and High Electron Mobility Transistors (HEMT).

About Oxford Instruments plc
Oxford Instruments aims to pursue responsible development and deeper understanding of the world through science and technology. Oxford Instruments’ objective is to be a leading supplier of next generation tools and systems for research and industry. This involves the combination of core technologies in areas such as low temperature and high magnetic field environments, Nuclear Magnetic Resonance, X-ray electron and optical based metrology, and advanced growth, deposition and etching. Oxford Instruments’ products, expertise, and ideas address global issues such as energy, environment, terrorism and health and are part of the next generation of telecommunications, energy products, environmental measures, security devices, drug discovery and medical advances.

About PARC
A premier center for commercial innovation, PARC, a Xerox company, is in the business of breakthroughs. We work closely with global enterprises, entrepreneurs, government agencies and partners, and other clients to invent, co-develop, and bring to market game-changing innovations by combining imagination, investigation, and return on investment for our clients. For 40 years, we have lived at the leading edge of innovation, merging inquiry and strategy to pioneer technological change. PARC was incorporated in 2002 as a wholly owned independent subsidiary of Xerox Corporation – enabling us to continue pioneering technological change but across a broader set of industries and clients today.

For more information, please click here

Contacts:
Ostendo
+1(760)710-3000

Copyright © Ostendo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Miniscule amounts of impurities in vacuum greatly affecting OLED lifetime December 30th, 2016

Trace metal recombination centers kill LED efficiency: UCSB researchers warn that trace amounts of transition metal impurities act as recombination centers in gallium nitride semiconductors November 3rd, 2016

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

Researchers surprised at the unexpected hardness of gallium nitride: A Lehigh University team discovers that the widely used semiconducting material is almost as wear-resistant as diamonds October 31st, 2016

Products

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

STMicroelectronics’ Semiconductor Chips Contribute to Connected Toothbrush from Oral-B That Sees What You Don’t: Microcontroller and Accelerometer help brushers clean their teeth more effectively October 4th, 2016

Particle Works launches range of high quality magnetic nanoparticles August 31st, 2016

Announcements

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Patents/IP/Tech Transfer/Licensing

Keystone Nano Announces The US FDA Has Awarded Orphan Drug Designation For Ceramides For The Treatment Of Liver Cancer November 8th, 2016

Leti to Tackle Tomorrow's Research Strategies with Stanford University’s SystemX Alliance: French R&D Center Is the First Research Institute to Join the Collaboration and Provides Bridges Between Academia and Industry, Leveraging Alliance’s Potential October 4th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Research partnerships

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project