Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Ostendo Announces Gallium Nitride substrate that enables LED With 2.5X Intensity

Abstract:
LEDs grown on Ostendo's semi-polar GaN achieve 2.5x the brightness of c-plane GaN based LEDs

Ostendo Announces Gallium Nitride substrate that enables LED With 2.5X Intensity

Carlsbad, CA & Oxfordshire, U.K. | Posted on December 16th, 2010

Ostendo Technologies, Inc. (Ostendo) and Technologies and Devices International, Inc. (TDI), part of the Oxford Instruments Group, are pleased to announce that LED structures grown on their semi-polar (11-22) GaN wafers have resulted in more than 2.5x the emission intensity of the c-plane GaN based LED structures.

Ostendo & TDI had entered into an Information Exchange Agreement with Palo Alto Research Center (PARC) in 2008, pursuant to which they agreed to make semi-polar GaN wafers available for PARC to grow LED and Laser Diode structures on the supplied wafers, and independently validate and report the achieved results. As part of their validation, PARC has grown MQW LED structure on our semi-polar GaN side-by-side with a reference c-plane LED structure in the same MOCVD run. Some of the key results verify the following:

- The LED structure grown on our semi-polar GaN achieved more than 2.5x more emission intensity than the reference LED structure grown on c-plane GaN

- Our semi-polar GaN allowed for higher indium (In) incorporation resulting in longer peak wavelength of ~25 nm for the structure grown.

Further findings of this collaboration has recently been published as a feature article titled "Semi-polar nitride surfaces and heterostructures" in the October 2010 issue of the prestigious Physica Status Solidi Magazine.

"This is an excellent validation of our work in the semi-polar GaN area for the last two and a half years as it verified the main advantage of our semi-polar GaN and should help encourage LED makers to start considering it for future LED brightness improvements" added Dr. Hussein S. El Ghoroury, CEO of Ostendo. "We are delighted that the production grade, semi-polar GaN wafers produced at TDI, which are as a result of research funded by Ostendo, has generated such encouraging results", comments Frazer Anderson, Business Development Director at Oxford Instruments, "As a business, Oxford Instruments aims to use innovation to turn smart science into world class products, and this joint initiative with Ostendo and PARC meets our customers' needs through the advanced technology our companies have available."

Earlier this year Ostendo and TDI announced the availability of semi-polar (11-22) GaN layer on sapphire substrate wafers using Ostendo's proprietary design and TDI's proprietary Hydride Vapor Phase Epitaxy (HVPE) technology. This joint development now provides the opportunity to leading High Brightness Light Emitting Diode (HBLED) and Laser Diode developers to increase optical efficiency significantly compared with structures grown on c-plane GaN substrates.

####

About Ostendo
Ostendo Technologies Inc. (Ostendo) is a developer of Solid State Light (SSL) based display technologies and products for commercial and consumer markets with the objective to achieve efficiencies and cost effectiveness at the material, the device and the system levels. Ostendo’s enabling technologies support products that are disruptive in their individual marketplaces.

About Oxford Instruments - Technologies and Devices International, Inc. (TDI)
TDI, a wholly owned subsidiary of Oxford Instruments, is a world leader in the development of Hydride Vapor Phase Epitaxy (HVPE) processes and techniques for the production of novel compound semiconductors such as GaN, AlN, AlGaN, InN, InGaN. Using TDI HVPE technology, Oxford Instruments can produce templates for applications such as High Brightness Light Emitting Diodes (HBLEDs), Laser Diodes and High Electron Mobility Transistors (HEMT).

About Oxford Instruments plc
Oxford Instruments aims to pursue responsible development and deeper understanding of the world through science and technology. Oxford Instruments’ objective is to be a leading supplier of next generation tools and systems for research and industry. This involves the combination of core technologies in areas such as low temperature and high magnetic field environments, Nuclear Magnetic Resonance, X-ray electron and optical based metrology, and advanced growth, deposition and etching. Oxford Instruments’ products, expertise, and ideas address global issues such as energy, environment, terrorism and health and are part of the next generation of telecommunications, energy products, environmental measures, security devices, drug discovery and medical advances.

About PARC
A premier center for commercial innovation, PARC, a Xerox company, is in the business of breakthroughs. We work closely with global enterprises, entrepreneurs, government agencies and partners, and other clients to invent, co-develop, and bring to market game-changing innovations by combining imagination, investigation, and return on investment for our clients. For 40 years, we have lived at the leading edge of innovation, merging inquiry and strategy to pioneer technological change. PARC was incorporated in 2002 as a wholly owned independent subsidiary of Xerox Corporation – enabling us to continue pioneering technological change but across a broader set of industries and clients today.

For more information, please click here

Contacts:
Ostendo
+1(760)710-3000

Copyright © Ostendo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Display technology/LEDs/SS Lighting/OLEDs

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt.% nanodiamond additive at a lower cost than with traditional fillers: Improved materials and processes enable nanodiamond cost reductions of up to 70 percent for electronics and LED app July 9th, 2014

'Nano-pixels' promise thin, flexible, high resolution displays July 9th, 2014

Projecting a Three-Dimensional Future: TAU researchers develop holography technology that could change the way we view the world July 9th, 2014

Products

QuantuMDx announce prototype handheld lab for 15 minute malaria diagnosis and drug resistance testing April 23rd, 2014

Nanovations Sets new Benchmark in Automotive Windscreen Coating Durability: Nanovations new automotive glass coating Vision Protect, sets new benchmark in glass coating durability March 23rd, 2014

Tawada CleanTech to show fabric duct and eco cool coating in MegaBuild March 21st, 2014

NEI Introduces Self-healing Anti-corrosion Coating for Zinc-Plated and Galvanized Steel March 14th, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Patents/IP/Tech Transfer/Licensing

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

Research partnerships

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE