Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Vibrating nanorods measure thin films for microcircuits

Abstract:
A key step in many nanofabrication processes is to create thin films, sometimes only one molecule thick, by a method known as atomic layer deposition. Researchers at Cornell and Tel Aviv University have developed a new tool for nanofabricators to test the physical properties of such films.

By Bill Steele

Vibrating nanorods measure thin films for microcircuits

Ithaca, NY | Posted on December 11th, 2010

Ultrathin films are increasingly important in constructing microcircuits. Their physical characteristics often determine their electronic behavior as well as their resistance to wear.

The researchers have shown that tiny resonant cantilevers -- silicon rods anchored at one end, like a tiny diving board -- can determine the density of a film and its Young's modulus, a measure of resistance to bending. The method offers several advantages over other methods of measuring these characteristics of thin films, the researchers said, and can be used by any researchers with access to nanofabrication capabilities comparable to those at the Cornell Nanoscale Facility.

The work was reported in the Aug. 15 issue of the Journal of Applied Physics by Cornell research associate Rob Ilic, Slava Krylov, senior lecturer at Tel Aviv University and former visiting professor at Cornell, and Harold Craighead, the C.W. Lake Jr. Professor of Engineering at Cornell.

Cornell researchers have previously used tiny vibrating cantilevers just a few nanometers (billionths of a meter) thick to detect the mass of objects as small as a virus. Just as a thick guitar string vibrates at a lower note than a thinner one, adding mass to a vibrating rod changes its frequency of vibration. Coating the rod with a thin film adds detectable mass, and from the mass and thickness of the film, density can be determined.

The film also changes the cantilever's resistance to bending. To separate out this characteristic, the researchers compared in-plane (side to side) and out-of-plane (up and down) vibrations. The resistance to bending in different directions is noticeably different when the vibrating rod is wide and thin. When the cross-section of the rod is square, there is no difference between up and down and side-to-side movement.

To test their idea, the researchers fabricated a variety of cantilevers six to 10 microns (millionths of a meter) long, 45 nanometers thick and with widths varying from 45 nanometers to 1 micron. In various experiments, they applied films of aluminum, aluminum nitride and hafnium from 21.2 to 21.5 nanometers thick to the surface of the cantilevers.

A laser beam focused on the base of a cantilever supplies energy to set it vibrating, and another laser aimed at the end measures the vibration. Like a tuning fork, each rod has a resonant frequency at which it vibrates, and that depends on the dimensions and physical characteristics of the device. Comparing the resonant frequency and some of its harmonics before and after a film was applied enabled the researchers to calculate the density and Young's modulus of the film.

Over many experiments, the calculations agreed well with theoretical predictions and characteristics of films measured by other methods. Some aspects of the method of fabricating the nanocantilevers could affect the results, the researchers found, but they said accuracy could be improved.

The work was supported by the Defense Advanced Projects Research Administration, the National Science Foundation and the state of New York.

####

For more information, please click here

Contacts:
Media Contact:
Joe Schwartz
(607) 254-6235


Cornell Chronicle:
Bill Steele
(607) 255-7164

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Thin films

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice University chemists make laser-induced graphene from wood July 31st, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Chip Technology

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Announcements

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Tools

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Research partnerships

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project