Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Pure nanotube-type growth edges toward the possible

Abstract:
In calculating energies for graphene, Rice researchers find clues to chiral control

Pure nanotube-type growth edges toward the possible

Houston, TX | Posted on December 6th, 2010

New research at Rice University could ultimately show scientists the way to make batches of nanotubes of a single type.

A paper in the online journal Physical Review Letters unveils an elegant formula by Rice University physicist Boris Yakobson and his colleagues that defines the energy of a piece of graphene cut at any angle.

Yakobson, a professor in mechanical engineering and materials science and of chemistry, said this alone is significant because the way graphene handles energy depends upon the angle -- or chirality -- of its edge, and solving that process for odd angles has been extremely challenging. But, he wrote, the research has "profound implications in the context of nanotube growth, offering rational ways to control their chiral symmetry, a tantalizing yet so far elusive goal."

Graphene is the single-atom-thick form of carbon that has become of tremendous interest for its potential to revolutionize electronics, optics, sensing and mechanical devices. Getting a handle on how this chicken-wire-shaped sheet of carbon atoms transports electricity has been the focus of intense study.

A sheet of graphene with zigzag or armchair edges squares up nicely. Zigzags are metallic, armchairs are semiconductors, and their atoms march in rank, evenly spaced, along the edges. A full 30 degrees of rotation separates one from the other.

But if the hexagons that make up a sheet are offset less than 30 degrees, atoms along a straight edge are unevenly spaced. "That makes analysis of the energy very complicated, because it's a large irregular structure. It's like noise," Yakobson said. "We've found a way to calculate the energies in these arbitrary angles," he said.

Yakobson and his co-authors, Yuanyue Liu, a graduate student in his lab, and Alex Dobrinsky, a former graduate student and now a postdoctoral researcher at Brown University, soon wondered how these findings applied to carbon nanotubes.

"There are as many ways to roll graphene into a nanotube as there are ways to roll a newspaper," Yakobson said. "The text can be aligned circumferentially or run straight along the axis or spiral at an angle."

While rolling a newspaper makes it hard to read, rolling carbon into a nanotube makes it relatively easy to "read" its type -- whether armchair or zigzag or some variation in between. What's impossible is controlling how the tube will roll. The process tends to be willy-nilly, leaving researchers the task of separating the nanotubes they need from the bulk through ultracentrifugation or other expensive procedures.

Yakobson said it would be a real game-changer if they could, for instance, grow batches of pure armchair nanotubes for use in such projects as armchair quantum nanowire (AQW). As imagined by Rice's late Nobel Laureate Richard Smalley, AQW could revolutionize the nation's power grid by carrying 10 times the amount of electricity as copper at only one-sixth the weight.

Yakobson's work may open a path to do so. A nanotube's chirality is determined by the combination of energies at play in its nucleation. "When it just emerges from the ‘primordial soup' of carbon, the edge of the tube is essentially the same as the edge of graphene," he said.

"At first, it's just a cap. There's no stem yet. You're frying these caps on a skillet, and they're bubbling," he said. "The probability for different bubbles to emerge is controlled by energy around the edge."

The chirality of the nascent nanotube is set when atoms in the cap self-assemble a sixth pentagon (necessary to mold the hexagons into a dome). "That's where we can, I think for the first time, make some quantitative judgment about how different chiral structures emerge," Yakobson said.

It may be worth chemists' efforts to look more closely at the energy between the catalyst and carbon structure. "This has some promise," he said. "If you can tweak this preference, if you can change energy from the catalyst side, you change the preference of the chirality. And then you can tell these self-assembling carbons, 'Please dance this way; don't dance that way.'"

Yakobson hopes the new work helps solve the long-standing problem of nanotube chirality. "For almost two decades, we didn't have a good understanding of this process," he said. "Actually, we didn't have a clue. I'm not saying this is a full solution, but this is the first time we've seen a quantitative approach, an order in the seeming chaos. It just feels satisfying.

"The bottom line is simple. We figured out the graphene edge and bridged it to the holy grail of nanotubes, which is chirality control."

Read the abstract at: prl.aps.org/abstract/PRL/v105/i23/e235502

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The National Space Society Pays Tribute to Dr. Kalam -- One Of Our Leading Lights Has Joined The Stars August 1st, 2015

Nanocellulose Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Chemistry

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Academic/Education

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Nanotubes/Buckyballs/Fullerenes

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Announcements

The National Space Society Pays Tribute to Dr. Kalam -- One Of Our Leading Lights Has Joined The Stars August 1st, 2015

Nanocellulose Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project