Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Imaging with neutrons: Magnetic domains shown for the first time in 3D

Boundaries of magnetic domains can be computer imaged
in three dimensions. Image: HZB/Manke, Grothausmann
Boundaries of magnetic domains can be computer imaged in three dimensions. Image: HZB/Manke, Grothausmann

Abstract:
So far, it has only been possible to image magnetic domains in two dimensions. Now, for the first time, Scientists at Helmholtz-Zentrum Berlin (HZB) have managed to create three-dimensional images of these domains deep within magnetic materials.

Imaging with neutrons: Magnetic domains shown for the first time in 3D

Berlin | Posted on November 25th, 2010

Although they exist in almost every magnetic material, you cannot see them: magnetic domains are microscopically small regions of uniform magnetization. Every magnetic material is divided into such domains. Scientists call them "Weiss domains" after physicist Pierre-Ernest Weiss, who predicted their existence theoretically more than a hundred years ago. In 1907, he recognized that the magnetic moments of atoms within a bounded domain are equally aligned.

All pursuit of this theory has so far been limited to two-dimensional images and material surfaces. Accordingly, researchers have only ever been able to see a domain in cross section. Together with colleagues from the German Federal Institute for Materials Research and Testing and the Swiss Paul-Scherrer-Institute, Dr. Ingo Manke and his group at the Institute of Applied Material Research at HZB have developed a method by which they can image the full spatial structure of magnetic domains - even deep within materials. To do this, special iron-silicon crystals were produced at the Leibniz Institute for Solid State and Materials Research Dresden, for which the research group of Rudolf Schäfer had already developed model representations. Their actual existence has now been proven for the first time. With it, the researchers have solved a decade-old problem in imaging. Their findings will be published in Nature Communications (DOI: 10.1038 /ncomms1125).

Most magnetic materials consist of a complex network of magnetic domains. The researchers' newly developed method exploits the areas where the domains meet - the so-called domain walls. Within a domain, all magnetic moments are the same, but the magnetic alignment is different from one domain to another. So, at each domain wall, the direction of the magnetic field changes. The researchers exploit these changes for their radiographic method in which they use not light, but neutrons.

Magnetic fields deflect the neutrons slightly from their flight path, just as water diverts light. An object under water cannot be directly perceived because of this phenomenon; the object appears distorted and in a different location. Similarly, the neutrons pass through domain walls along their path through the magnetic material. At these walls, they are diverted into different directions.

This diversion, however, is only a very weak effect. It is typically invisible in a neutron radiogram, since it is overshadowed by non-diverted rays. The researchers therefore employ several diffraction gratings in order to separate the diverted rays. During a measurement, they rotate the sample and shoot rays through it from all directions. From the separated rays, they can calculate all domain shapes and generate an image of the domain network in its entirety.

Magnetic domains are important for understanding material properties and the natural laws of physics. They also play an important role in everyday life: most notably in storage media such as hard disks, for example, or battery chargers for laptops or electric vehicles. If the domain properties are carefully chosen to minimize electricity loss at the domain walls, the battery charger becomes more efficient.

####

For more information, please click here

Contacts:
Dr. Ingo Manke
(030) 8062 - 42682
(030) 8062 - 43059

Dr. Ina Helms
(030) 8062 - 42034
(030) 8062 - 42998

Copyright © Helmholtz-Zentrum Berlin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Physics

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

New evidence for an exotic, predicted superconducting state October 27th, 2014

Solid nanoparticles can deform like a liquid: Unexpected finding shows tiny particles keep their internal crystal structure while flexing like droplets October 12th, 2014

Unconventional photoconduction in an atomically thin semiconductor: New mechanism of photoconduction could lead to next-generation excitonic devices October 9th, 2014

Academic/Education

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Tools

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Graphenea opens US branch October 16th, 2014

NTU develops ultra-fast charging batteries that last 20 years October 14th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE