Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Singapore’s A*STAR participates in groundbreaking European Union (EU) project to jointly create a processor that is the size of a molecule

Prof Chirstian Joachim (second from left) and some the Atom Technology
team at Singapore A*STAR’s IMRE, which holds the only patent in the
world for making solid interconnections and packaging of a molecular chip.
Prof Chirstian Joachim (second from left) and some the Atom Technology team at Singapore A*STAR’s IMRE, which holds the only patent in the world for making solid interconnections and packaging of a molecular chip.

Abstract:
A*STAR's Institute of Materials Research and Engineering (IMRE) partners 10 EU research organisations to work on the groundbreaking €10 million ATMOL project that lays the foundation for creating and testing a molecular-sized processor chip.

Singapore’s A*STAR participates in groundbreaking European Union (EU) project to jointly create a processor that is the size of a molecule

Singapore | Posted on November 19th, 2010

A*STAR's IMRE and 10 EU research organisations are working together to build what is essentially a single molecule processor chip. As a comparison, a thousand of such molecular chips could fit into one of today's microchips, the core device that determines computational speed. The ambitious project, termed Atomic Scale and Single Molecule Logic Gate Technologies (ATMOL), will establish a new process for making a complete molecular chip. This means that computing power can be increased significantly but take up only a small fraction of the space that is required by today's standards.

The fabrication process involves the use of three unique ultra high vacuum (UHV) atomic scale interconnection machines which build the chip atom-by-atom. These machines physically move atoms into place one at a time at cryogenic temperatures. One of these machines is located in A*STAR's IMRE.

"IMRE holds the only patent in the world for making solid interconnections and packaging of a molecular chip", says Prof Christian Joachim, who is leading the entire project, explaining the reason A*STAR's IMRE was chosen as a partner in this groundbreaking project.

"The UHV interconnection machine at IMRE is the only one in the entire project that can study the performance of a single molecule logic gate and surface atom circuit logic gate at the moment", added Prof Joachim, who is the Head of Molecular Nanoscience and Picotechnology at the French Centre National de la Recherche Scientifique (CNRS), and a Visiting Investigator at IMRE. Prof Joachim's team in IMRE is one of the pioneers in atom technology, having built the world's first controllable molecular gear.

"The work in this project is extremely important in setting the stage for how computer chips and electronics may be made in the future", said Prof Andy Hor, Executive Director of IMRE. "The fact that we are the only non-EU research organisation in this project speaks volumes about the level of Singapore's research and how far we have come in building our R&D capabilities".

According to Dr. David Guedj, the European Officer following ATMOL for The European Commission, "ATMOL is the flagship project coming out of the recent Call for Proposals on Molecular Scale Devices and Systems". It was launched by the Future and Emerging Technologies (FET-Proactive) part of the Information and Communication Technologies (ICT) programme of the European Commission. FET-Proactive supports transformational, long-term collaborative frontier research in Europe, with a view to develop scientific excellence and technological innovation.

As part of the project, annual ATMOL conferences will be held to bring together all project partners for progress updates. The inaugural conference will be hosted by Singapore next year. The project will officially commence on 1 January 2011.

####

About A*STAR
The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences, and physical sciences and engineering research institutes, and seven consortia & centres, which are located in Biopolis and Fusionopolis, as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners.

For more information about A*STAR, please visit www.a-star.edu.sg

About the Institute of Materials Research and Engineering (IMRE)
Established in September 1997, IMRE has built strong capabilities in materials analysis, characterisation, materials growth, patterning, fabrication, synthesis and integration. IMRE is an institute of talented researchers equipped with state-of-the-art facilities such as the SERC nanofabrication, Processing and Characterisation facility to conduct world-class materials science research. Leveraging on these capabilities, R&D programmes have been established in collaboration with industry partners. These include research on organic solar cells, nanocomposites, flexible organic light-emitting diodes (OLEDs), solid-state lighting, nanoimprinting, microfluidics and next generation atomic scale interconnect technology.

For more information about IMRE, please visit www.imre.a-star.edu.sg

For more information, please click here

Contacts:
For media enquiries, please contact:
Mr Eugene Low
Manager, Corporate Communications
for Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9230 9235


For technical enquiries, please contact:
Prof Christian Joachim
Visiting Investigator
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8344

Copyright © A*STAR

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

Possible Futures

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

Chip Technology

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Nanoelectronics

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Announcements

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

Events/Classes

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Introducing the RE標ORK Bio-inspired Robotics Summit in Berlin April 27th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Leti Extends Collaboration with Qualcomm on CoolCubeTM 3D Integration Technology for High-Density, High-Performance ICs: Collaboration Goals Include Building an Ecosystem To Take the Chip-stacking Technology from Design to Fabrication April 13th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

Strem Chemicals and SONA Nanotech Sign Distribution Agreement for the World’s First Gold Nanorods Synthesized without CTAB February 24th, 2016

Research partnerships

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic