Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Computer chip technology advancing

Paul Swanson
Paul Swanson

Abstract:
The next generation of computer chips might be created in something not much more complex than a microwave oven and the technology is being developed right here at the U of A.

By Jon Grier, News Writer

Computer chip technology advancing

Alberta | Posted on November 18th, 2010

Jillian Buriak is a senior researcher at the National Institute for Nanotechnology. One of her group's projects could further revolutionize the production of computer chips.

After a short stint in the microwave, a silicon chip prepared using plastic polymers forms a pattern of lines or rings that is far more complex than what a conventional computer chip has. The lines formed from this reaction, only tens of nanometers apart from each other, act as a template for conductive material to be applied on.

"The polymer can be induced with a little bit of outside intervention. [Polymers] can say, 'Hey, I'm going to form these rings.' They can do it perfectly," Buriak said.

The outside intervention, a simple microwave oven, was the U of A group's big innovation. To make a computer chip template that complex, it can take up to three days by normal industry methods. The industry set a goal of cutting this down to four minutes; the group found that a microwave could do it in 20 seconds.

Ken Harris, a researcher working under Buriak, came up with the original idea for this inexpensive and unconventional method, along with other members of the team.

"The fact that [the rings] assemble — people have known that for quite a while now […] That, we didn't invent. But the technique for making that happen quickly is brand new."

Harris said the fact that there are even more lines than a conventional computer chips could have implications for electronics.

"The more devices you can pack onto a chip, the faster and more powerful that computer is. So a lot of that depends on how far [the lines] are separated."

The computer chip industry wants to find a way to produce chips with a high level of density as efficiently as possible. Since the scale is so small, the alignment of the pattern has to be perfect or else the chip becomes worthless. If it is possible to produce properly aligned chips with equipment as inexpensive as a household microwave, Buriak explained that it could have serious implications for the industry.

There are more applications for the process than mass-producing faster chips, according to Buriak. The relationship between the polymers that create the chip template is similar to how living cells recognize one another and form a larger entity. By treating these cells the same way, it may be possible to interface living cells with silicon the same way the plastic polymers work.

####

For more information, please click here

Copyright © University of Alberta

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Academic/Education

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Global 450 consortium announces new general manager of internal operations: TSMC’s Cheng-Chung Chien Receives Unanimous Support, Brings History of Innovation and Efficiency to Global Consortium of Companies Driving Industry Transition to 450mm Wafer Technology March 26th, 2014

NanoTecNexus to Host "Chemistry of Wine" Fundraiser in Support of STEM Education - Collaborations Key to Success - March 20th, 2014

Chip Technology

'Exotic' material is like a switch when super thin April 18th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Nanoelectronics

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE