Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Computer chip technology advancing

Paul Swanson
Paul Swanson

Abstract:
The next generation of computer chips might be created in something not much more complex than a microwave oven and the technology is being developed right here at the U of A.

By Jon Grier, News Writer

Computer chip technology advancing

Alberta | Posted on November 18th, 2010

Jillian Buriak is a senior researcher at the National Institute for Nanotechnology. One of her group's projects could further revolutionize the production of computer chips.

After a short stint in the microwave, a silicon chip prepared using plastic polymers forms a pattern of lines or rings that is far more complex than what a conventional computer chip has. The lines formed from this reaction, only tens of nanometers apart from each other, act as a template for conductive material to be applied on.

"The polymer can be induced with a little bit of outside intervention. [Polymers] can say, 'Hey, I'm going to form these rings.' They can do it perfectly," Buriak said.

The outside intervention, a simple microwave oven, was the U of A group's big innovation. To make a computer chip template that complex, it can take up to three days by normal industry methods. The industry set a goal of cutting this down to four minutes; the group found that a microwave could do it in 20 seconds.

Ken Harris, a researcher working under Buriak, came up with the original idea for this inexpensive and unconventional method, along with other members of the team.

"The fact that [the rings] assemble people have known that for quite a while now [] That, we didn't invent. But the technique for making that happen quickly is brand new."

Harris said the fact that there are even more lines than a conventional computer chips could have implications for electronics.

"The more devices you can pack onto a chip, the faster and more powerful that computer is. So a lot of that depends on how far [the lines] are separated."

The computer chip industry wants to find a way to produce chips with a high level of density as efficiently as possible. Since the scale is so small, the alignment of the pattern has to be perfect or else the chip becomes worthless. If it is possible to produce properly aligned chips with equipment as inexpensive as a household microwave, Buriak explained that it could have serious implications for the industry.

There are more applications for the process than mass-producing faster chips, according to Buriak. The relationship between the polymers that create the chip template is similar to how living cells recognize one another and form a larger entity. By treating these cells the same way, it may be possible to interface living cells with silicon the same way the plastic polymers work.

####

For more information, please click here

Copyright © University of Alberta

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Possible Futures

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Chip Technology

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Nanoelectronics

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic