Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Computer chip technology advancing

Paul Swanson
Paul Swanson

Abstract:
The next generation of computer chips might be created in something not much more complex than a microwave oven and the technology is being developed right here at the U of A.

By Jon Grier, News Writer

Computer chip technology advancing

Alberta | Posted on November 18th, 2010

Jillian Buriak is a senior researcher at the National Institute for Nanotechnology. One of her group's projects could further revolutionize the production of computer chips.

After a short stint in the microwave, a silicon chip prepared using plastic polymers forms a pattern of lines or rings that is far more complex than what a conventional computer chip has. The lines formed from this reaction, only tens of nanometers apart from each other, act as a template for conductive material to be applied on.

"The polymer can be induced with a little bit of outside intervention. [Polymers] can say, 'Hey, I'm going to form these rings.' They can do it perfectly," Buriak said.

The outside intervention, a simple microwave oven, was the U of A group's big innovation. To make a computer chip template that complex, it can take up to three days by normal industry methods. The industry set a goal of cutting this down to four minutes; the group found that a microwave could do it in 20 seconds.

Ken Harris, a researcher working under Buriak, came up with the original idea for this inexpensive and unconventional method, along with other members of the team.

"The fact that [the rings] assemble people have known that for quite a while now [] That, we didn't invent. But the technique for making that happen quickly is brand new."

Harris said the fact that there are even more lines than a conventional computer chips could have implications for electronics.

"The more devices you can pack onto a chip, the faster and more powerful that computer is. So a lot of that depends on how far [the lines] are separated."

The computer chip industry wants to find a way to produce chips with a high level of density as efficiently as possible. Since the scale is so small, the alignment of the pattern has to be perfect or else the chip becomes worthless. If it is possible to produce properly aligned chips with equipment as inexpensive as a household microwave, Buriak explained that it could have serious implications for the industry.

There are more applications for the process than mass-producing faster chips, according to Buriak. The relationship between the polymers that create the chip template is similar to how living cells recognize one another and form a larger entity. By treating these cells the same way, it may be possible to interface living cells with silicon the same way the plastic polymers work.

####

For more information, please click here

Copyright © University of Alberta

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyres' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GWs new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Chip Technology

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Nanoelectronics

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project