Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Novel metamaterial vastly improves quality of ultrasound imaging

This 3D holey-structured metamaterial can improve the resolution of sonagraphy by a factor of 50, promising better picture quality for ultrasound imaging as well as sonar. (Photo by Xiang Zhang/UC Berkeley, courtesy of Nature Physics)
This 3D holey-structured metamaterial can improve the resolution of sonagraphy by a factor of 50, promising better picture quality for ultrasound imaging as well as sonar. (Photo by Xiang Zhang/UC Berkeley, courtesy of Nature Physics)

Abstract:
University of California, Berkeley, scientists have found a way to overcome one of the main limitations of ultrasound imaging - the poor resolution of the picture.

By Robert Sanders, Media Relations

Novel metamaterial vastly improves quality of ultrasound imaging

Berkeley, CA | Posted on November 9th, 2010

Everyone who has had an ultrasound, including most pregnant women, is familiar with the impressionistic nature of the images. One of the limits to the detail obtainable with sonography is the frequency of the sound. The basic laws of physics dictate that the smallest objects you can "see" are about the size of the wavelength of the sound waves. For ultrasound of deep tissues in the body, for example, the sound waves are typically 1-5 megahertz - far higher than what humans can hear - which imposes a resolution limit of about a millimeter.

In a paper appearing online this week in the journal Nature Physics, physicists at UC Berkeley and Universidad Autonoma de Madrid in Spain demonstrate how to capture the evanescent waves bouncing off an object to reconstruct detail as small as one-fiftieth of the wavelength of the sound waves. Evanescent sound waves are vibrations near the object that damp out within a very short distance, as opposed to propagating waves, which can travel over a long distance.

"With our device, we can pick up and transmit the evanescent waves, which contain a substantial fraction of the ultra-subwavelength information from the object, so that we can realize super-resolution acoustic imaging," said first author Jie Zhu, a post-doctoral fellow in the Center for Scalable and Integrated NanoManufacturing (SINAM), a National Science Foundation-funded Nano-scale Science and Engineering Center at UC Berkeley.

The researchers refer to their device for capturing evanescent waves as a three-dimensional, holey-structured metamaterial. It consists of 1,600 hollow copper tubes bundled into a 16 centimeter (6 inch) bar with a square cross-section of 6.3 cm (2.5 inches). Placed close to an object, the structure captures the evanescent waves and pipes them through to the opposite end.

In a practical device, Zhu said, the metamaterial could be mounted on the end of an ultrasound probe to vastly improve the image resolution. The device would also improve underwater sonography, or sonar, as well as non-destructive evaluation in industry applications.

"For ultrasound detection, the image resolution is generally in the millimeter range," said co-author Xiaobo Yin. "With this device, resolution is only limited by the size of the holes."

In the researchers' experiments, the holes in the copper tubes were about a millimeter in diameter. Using acoustic waves of about 2 kHz, the resolution of an image would normally be limited to the wavelength, or 200 millimeters. With their holey-structured metamaterial, they can resolve the feature size as small as 4 mm, or one-fiftieth of a wavelength.

"Without the metamaterial, it would be impossible to detect such a deep sub-wavelength object at all," Yin said.

The work was performed in the laboratory of Xiang Zhang, the Ernest S. Kuh Endowed Chaired Professor in the Department of Mechanical Engineering at UC Berkeley and the director of SINAM. The experiments were based on theoretical predictions of the group led by Professor Francisco J. García-Vidal of the Universidad Autonoma de Madrid. Other co-authors of the paper are J. Christensen of the Universidad Autonoma de Madrid, L. Martin-Moreno of CSIC-Universidad de Zaragoza in Spain, J. Jung from the Aalborg University in Denmark, and L. Fok of SINAM.

The work was funded by the U.S. Office of Naval Research and the Spanish Ministry of Science.

####

For more information, please click here

Copyright © University of California, Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Marine/Watercraft

Relax, just break it July 20th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Govt.-Legislation/Regulation/Funding/Policy

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Possible Futures

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Tools

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Terahertz spectroscopy enters the single-molecule regime September 7th, 2018

Mirrorcle Demonstrates MEMS-based Programmable Light Source at CES and PW18 August 30th, 2018

Stress-free ALD from Picosun August 28th, 2018

Military

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Neutrophil nanosponges soak up proteins that promote rheumatoid arthritis September 3rd, 2018

Virginia Tech researchers develop novel process to 3D print one of the strongest materials on Earth August 23rd, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Research partnerships

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project