Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Novel metamaterial vastly improves quality of ultrasound imaging

This 3D holey-structured metamaterial can improve the resolution of sonagraphy by a factor of 50, promising better picture quality for ultrasound imaging as well as sonar. (Photo by Xiang Zhang/UC Berkeley, courtesy of Nature Physics)
This 3D holey-structured metamaterial can improve the resolution of sonagraphy by a factor of 50, promising better picture quality for ultrasound imaging as well as sonar. (Photo by Xiang Zhang/UC Berkeley, courtesy of Nature Physics)

Abstract:
University of California, Berkeley, scientists have found a way to overcome one of the main limitations of ultrasound imaging - the poor resolution of the picture.

By Robert Sanders, Media Relations

Novel metamaterial vastly improves quality of ultrasound imaging

Berkeley, CA | Posted on November 9th, 2010

Everyone who has had an ultrasound, including most pregnant women, is familiar with the impressionistic nature of the images. One of the limits to the detail obtainable with sonography is the frequency of the sound. The basic laws of physics dictate that the smallest objects you can "see" are about the size of the wavelength of the sound waves. For ultrasound of deep tissues in the body, for example, the sound waves are typically 1-5 megahertz - far higher than what humans can hear - which imposes a resolution limit of about a millimeter.

In a paper appearing online this week in the journal Nature Physics, physicists at UC Berkeley and Universidad Autonoma de Madrid in Spain demonstrate how to capture the evanescent waves bouncing off an object to reconstruct detail as small as one-fiftieth of the wavelength of the sound waves. Evanescent sound waves are vibrations near the object that damp out within a very short distance, as opposed to propagating waves, which can travel over a long distance.

"With our device, we can pick up and transmit the evanescent waves, which contain a substantial fraction of the ultra-subwavelength information from the object, so that we can realize super-resolution acoustic imaging," said first author Jie Zhu, a post-doctoral fellow in the Center for Scalable and Integrated NanoManufacturing (SINAM), a National Science Foundation-funded Nano-scale Science and Engineering Center at UC Berkeley.

The researchers refer to their device for capturing evanescent waves as a three-dimensional, holey-structured metamaterial. It consists of 1,600 hollow copper tubes bundled into a 16 centimeter (6 inch) bar with a square cross-section of 6.3 cm (2.5 inches). Placed close to an object, the structure captures the evanescent waves and pipes them through to the opposite end.

In a practical device, Zhu said, the metamaterial could be mounted on the end of an ultrasound probe to vastly improve the image resolution. The device would also improve underwater sonography, or sonar, as well as non-destructive evaluation in industry applications.

"For ultrasound detection, the image resolution is generally in the millimeter range," said co-author Xiaobo Yin. "With this device, resolution is only limited by the size of the holes."

In the researchers' experiments, the holes in the copper tubes were about a millimeter in diameter. Using acoustic waves of about 2 kHz, the resolution of an image would normally be limited to the wavelength, or 200 millimeters. With their holey-structured metamaterial, they can resolve the feature size as small as 4 mm, or one-fiftieth of a wavelength.

"Without the metamaterial, it would be impossible to detect such a deep sub-wavelength object at all," Yin said.

The work was performed in the laboratory of Xiang Zhang, the Ernest S. Kuh Endowed Chaired Professor in the Department of Mechanical Engineering at UC Berkeley and the director of SINAM. The experiments were based on theoretical predictions of the group led by Professor Francisco J. García-Vidal of the Universidad Autonoma de Madrid. Other co-authors of the paper are J. Christensen of the Universidad Autonoma de Madrid, L. Martin-Moreno of CSIC-Universidad de Zaragoza in Spain, J. Jung from the Aalborg University in Denmark, and L. Fok of SINAM.

The work was funded by the U.S. Office of Naval Research and the Spanish Ministry of Science.

####

For more information, please click here

Copyright © University of California, Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Marine/Watercraft

BRAAVOO will design an unmanned surveying vessel and marine buoy that carry biosensors to monitor marine pollutants November 12th, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

NRL Researchers Develop Harder Ceramic for Armor Windows April 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New pathway to valleytronics January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Announcements

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Tools

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Graphene brings quantum effects to electronic circuits January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

New Molecular Beam Epitaxy deposition equipment at the ICN2 January 22nd, 2015

Military

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

Research partnerships

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE