Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Novel metamaterial vastly improves quality of ultrasound imaging

This 3D holey-structured metamaterial can improve the resolution of sonagraphy by a factor of 50, promising better picture quality for ultrasound imaging as well as sonar. (Photo by Xiang Zhang/UC Berkeley, courtesy of Nature Physics)
This 3D holey-structured metamaterial can improve the resolution of sonagraphy by a factor of 50, promising better picture quality for ultrasound imaging as well as sonar. (Photo by Xiang Zhang/UC Berkeley, courtesy of Nature Physics)

Abstract:
University of California, Berkeley, scientists have found a way to overcome one of the main limitations of ultrasound imaging - the poor resolution of the picture.

By Robert Sanders, Media Relations

Novel metamaterial vastly improves quality of ultrasound imaging

Berkeley, CA | Posted on November 9th, 2010

Everyone who has had an ultrasound, including most pregnant women, is familiar with the impressionistic nature of the images. One of the limits to the detail obtainable with sonography is the frequency of the sound. The basic laws of physics dictate that the smallest objects you can "see" are about the size of the wavelength of the sound waves. For ultrasound of deep tissues in the body, for example, the sound waves are typically 1-5 megahertz - far higher than what humans can hear - which imposes a resolution limit of about a millimeter.

In a paper appearing online this week in the journal Nature Physics, physicists at UC Berkeley and Universidad Autonoma de Madrid in Spain demonstrate how to capture the evanescent waves bouncing off an object to reconstruct detail as small as one-fiftieth of the wavelength of the sound waves. Evanescent sound waves are vibrations near the object that damp out within a very short distance, as opposed to propagating waves, which can travel over a long distance.

"With our device, we can pick up and transmit the evanescent waves, which contain a substantial fraction of the ultra-subwavelength information from the object, so that we can realize super-resolution acoustic imaging," said first author Jie Zhu, a post-doctoral fellow in the Center for Scalable and Integrated NanoManufacturing (SINAM), a National Science Foundation-funded Nano-scale Science and Engineering Center at UC Berkeley.

The researchers refer to their device for capturing evanescent waves as a three-dimensional, holey-structured metamaterial. It consists of 1,600 hollow copper tubes bundled into a 16 centimeter (6 inch) bar with a square cross-section of 6.3 cm (2.5 inches). Placed close to an object, the structure captures the evanescent waves and pipes them through to the opposite end.

In a practical device, Zhu said, the metamaterial could be mounted on the end of an ultrasound probe to vastly improve the image resolution. The device would also improve underwater sonography, or sonar, as well as non-destructive evaluation in industry applications.

"For ultrasound detection, the image resolution is generally in the millimeter range," said co-author Xiaobo Yin. "With this device, resolution is only limited by the size of the holes."

In the researchers' experiments, the holes in the copper tubes were about a millimeter in diameter. Using acoustic waves of about 2 kHz, the resolution of an image would normally be limited to the wavelength, or 200 millimeters. With their holey-structured metamaterial, they can resolve the feature size as small as 4 mm, or one-fiftieth of a wavelength.

"Without the metamaterial, it would be impossible to detect such a deep sub-wavelength object at all," Yin said.

The work was performed in the laboratory of Xiang Zhang, the Ernest S. Kuh Endowed Chaired Professor in the Department of Mechanical Engineering at UC Berkeley and the director of SINAM. The experiments were based on theoretical predictions of the group led by Professor Francisco J. García-Vidal of the Universidad Autonoma de Madrid. Other co-authors of the paper are J. Christensen of the Universidad Autonoma de Madrid, L. Martin-Moreno of CSIC-Universidad de Zaragoza in Spain, J. Jung from the Aalborg University in Denmark, and L. Fok of SINAM.

The work was funded by the U.S. Office of Naval Research and the Spanish Ministry of Science.

####

For more information, please click here

Copyright © University of California, Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Marine/Watercraft

Novel anti-biofilm nano coating developed at Ben-Gurion U.: Offers significant anti-adhesive potential for a variety of medical and industrial applications April 25th, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Computer simulation discloses new effect of cavitation: Steam bubbles in fast flowing fluids obviously also result from chemical surface properties; use for reducing wear in pumps and plain bearings March 29th, 2016

Drexel researchers roll out new method for making the invisible brushes that repel dirt: Polymer crystal 'turf' improves nanobrush-making process March 24th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

Weird quantum effects stretch across hundreds of miles July 21st, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

Possible Futures

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Academic/Education

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

SUNY Poly Celebrates Its 10th Year Exhibiting at SEMICON West with Cutting Edge Developments in Integrated Photonics and Power Electronics July 8th, 2016

FEI and King Abdullah University of Science and Technology Establish New Electron Microscopy ‘Centre of Excellence’: Centre of Excellence involves materials and life sciences research and technical collaboration July 5th, 2016

Announcements

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Tools

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Nanometrics Announces Upcoming Investor Events July 20th, 2016

A mini-antenna for the data processing of tomorrow: Nature Nanotechnology: Short-wavelength spin waves generated directly for the first time July 20th, 2016

Military

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

'Green' electronic materials produced with synthetic biology July 16th, 2016

New method can identify chemical warfare agents more easily: The method could help governments protect people from horrifying toxic effects July 15th, 2016

Research partnerships

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

Researchers invent 'smart' thread that collects diagnostic data when sutured into tissue: Advances could pave way for new generation of implantable and wearable diagnostics July 18th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic