Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Berkeley Lab Awarded $12.5 Million to Lead a U.S.-China Clean Energy Research Center

Berkeley Lab scientist Mark Levine, head and founder of the China Energy Group.
Berkeley Lab scientist Mark Levine, head and founder of the China Energy Group.

Abstract:
A consortium led by Lawrence Berkeley National Laboratory will advance low-energy buildings in both the U.S. and China.

Berkeley Lab Awarded $12.5 Million to Lead a U.S.-China Clean Energy Research Center

Berkeley, CA | Posted on October 8th, 2010

The U.S. Department of Energy's Lawrence Berkeley National Laboratory has been chosen to lead a consortium for a U.S.-China Clean Energy Research Center on Building Energy Efficiency. The Center will develop technologies for low-energy residential and commercial buildings, as well as work on commercialization of those technologies and research how human behavior affects building energy use.

The Clean Energy Resource Center (CERC) will receive $12.5 million over five years. The funding will be matched by consortium partners to provide at least $25 million in total U.S. funding. Chinese counterparts will contribute an additional $25 million. The consortium includes seven research partners: Oak Ridge National Laboratory, Natural Resources Defense Council (Beijing branch), ICF International (Beijing branch), National Association of State Energy Offices, Association of State Energy Research and Technology Transfer Institutions, Massachusetts Institute of Technology and University of California, Davis.

The consortium also includes contributions from a number of industrial partners—Dow Chemical Company, General Electric, Honeywell, Schneider Electric, Saint-Gobain, Bentley, Pegasus Investment Advisors and Climate Master—as well as several other organizations. Together they have committed more than $16 million in in-kind resources (primarily research staff) and cash over a five-year period.

"The U.S.-China Clean Energy Research Center will help to save energy and cut costs in buildings in both the United States and China," said Assistant Secretary of Energy for Policy and International Affairs David Sandalow. "This new partnership will also create new export opportunities for American companies, ensure the United States remains at the forefront of technology innovation and help to reduce global carbon pollution."

The U.S. organizations will be conducting research jointly with Chinese institutions. The specific institutions will be announced by the Chinese government in the near future.

Numerous studies have concluded that dramatic energy savings are possible through more energy-efficient buildings—savings on the order of 40 percent for existing buildings and 60 to 70 percent for new buildings. The need is especially acute in China, which has been building up its cities at an astonishing rate. The pace is expected to continue for the next several decades as urbanization continues. That means China will be building new homes, roads and infrastructure for hundreds of millions of rural-dwellers moving to the cities over the next 40 years or more.

"Energy efficiency in buildings has the greatest potential for reducing greenhouse gas emissions in the next two decades of any energy sector," says Berkeley Lab scientist Mark Levine, the leader of the consortium. "This collaboration between China and the United States can lead the way in demonstrating the great opportunities for and benefits of cooperation between nations in addressing greenhouse gas emissions."

Levine founded Berkeley Lab's China Energy Group more than 20 years ago and has worked closely with Chinese government and industrial leaders in that time, analyzing and promoting energy efficiency in China. The scientists of the China Energy Group have participated in the development of appliance standards and labeling, a benchmarking tool for cement and other industries to identify and implement energy-efficiency options and the development of tools and policies to reduce energy in buildings.

Both Oak Ridge and Berkeley Lab are recognized leaders in energy efficient buildings, having conducted hundreds of millions of dollars of research in the field in the past decade. On top of that, Berkeley Lab has been awarded more than $32 million in funding through the American Recovery and Reinvestment Act for work on energy-efficient buildings, including $15.9 million to build a national user facility containing a series of test beds for researchers to test and optimize various systems.

Subject to agreement with the Chinese partners, the six major research areas to be undertaken are: advanced monitoring and control systems, advanced glazing materials and systems, advanced insulation systems, cool roofs, lighting and commercialization and policy analyses. Some examples of technologies the Center will work on include low-cost insulation, especially for rural areas, which has the potential to substantially reduce coal use in northern China, and computer tools for evaluating window performance under different conditions and building configurations, to be applied in two cities in China and two in the United States.

Additionally, the Center will build a test bed facility for evaluating the performance of technologies and systems developed by the researchers. The facility will be located at a one-story building at a partner organization in China, such as a university. The test bed could become a long-term research facility to be used by generations of building energy engineers and scientists.

President Obama and President Hu Jintao formally announced the establishment of the CERC during the President's trip to Beijing last November.

####

About Lawrence Berkeley National Laboratory
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California.

For more information, please click here

Contacts:
Julie Chao
(510) 486-6491

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Openings/New facilities/Groundbreaking/Expansion

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

GLOBALFOUNDRIES Expands to Meet Worldwide Customer Demand: Company invests for capacity growth in the United States, Germany, China and Singapore February 10th, 2017

Portable superconductivity systems for small motors: Cambridge University lab achieves a breakthrough for portable superconductivity systems that are applicable for small motors, health care and other uses February 8th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Announcements

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Environment

Silicon Sense first to achieve EPA approval to import detonation nanodiamonds to US: Nanodiamond additives can significantly improve the performance of metal finishing, polymer thermal and mechanical compounds, polymer coatings, CMP polishing and a range of other applications November 29th, 2017

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Nano-sized gold particles have been shaped to behave as clones in biomedicine November 3rd, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Home

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Rice lab expands palette for color-changing glass: Nanophotonics team creates low-voltage, multicolor, electrochromic glass March 8th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

Alliances/Trade associations/Partnerships/Distributorships

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Solar/Photovoltaic

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Construction

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project