Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Berkeley Lab Awarded $12.5 Million to Lead a U.S.-China Clean Energy Research Center

Berkeley Lab scientist Mark Levine, head and founder of the China Energy Group.
Berkeley Lab scientist Mark Levine, head and founder of the China Energy Group.

Abstract:
A consortium led by Lawrence Berkeley National Laboratory will advance low-energy buildings in both the U.S. and China.

Berkeley Lab Awarded $12.5 Million to Lead a U.S.-China Clean Energy Research Center

Berkeley, CA | Posted on October 8th, 2010

The U.S. Department of Energy's Lawrence Berkeley National Laboratory has been chosen to lead a consortium for a U.S.-China Clean Energy Research Center on Building Energy Efficiency. The Center will develop technologies for low-energy residential and commercial buildings, as well as work on commercialization of those technologies and research how human behavior affects building energy use.

The Clean Energy Resource Center (CERC) will receive $12.5 million over five years. The funding will be matched by consortium partners to provide at least $25 million in total U.S. funding. Chinese counterparts will contribute an additional $25 million. The consortium includes seven research partners: Oak Ridge National Laboratory, Natural Resources Defense Council (Beijing branch), ICF International (Beijing branch), National Association of State Energy Offices, Association of State Energy Research and Technology Transfer Institutions, Massachusetts Institute of Technology and University of California, Davis.

The consortium also includes contributions from a number of industrial partners—Dow Chemical Company, General Electric, Honeywell, Schneider Electric, Saint-Gobain, Bentley, Pegasus Investment Advisors and Climate Master—as well as several other organizations. Together they have committed more than $16 million in in-kind resources (primarily research staff) and cash over a five-year period.

"The U.S.-China Clean Energy Research Center will help to save energy and cut costs in buildings in both the United States and China," said Assistant Secretary of Energy for Policy and International Affairs David Sandalow. "This new partnership will also create new export opportunities for American companies, ensure the United States remains at the forefront of technology innovation and help to reduce global carbon pollution."

The U.S. organizations will be conducting research jointly with Chinese institutions. The specific institutions will be announced by the Chinese government in the near future.

Numerous studies have concluded that dramatic energy savings are possible through more energy-efficient buildings—savings on the order of 40 percent for existing buildings and 60 to 70 percent for new buildings. The need is especially acute in China, which has been building up its cities at an astonishing rate. The pace is expected to continue for the next several decades as urbanization continues. That means China will be building new homes, roads and infrastructure for hundreds of millions of rural-dwellers moving to the cities over the next 40 years or more.

"Energy efficiency in buildings has the greatest potential for reducing greenhouse gas emissions in the next two decades of any energy sector," says Berkeley Lab scientist Mark Levine, the leader of the consortium. "This collaboration between China and the United States can lead the way in demonstrating the great opportunities for and benefits of cooperation between nations in addressing greenhouse gas emissions."

Levine founded Berkeley Lab's China Energy Group more than 20 years ago and has worked closely with Chinese government and industrial leaders in that time, analyzing and promoting energy efficiency in China. The scientists of the China Energy Group have participated in the development of appliance standards and labeling, a benchmarking tool for cement and other industries to identify and implement energy-efficiency options and the development of tools and policies to reduce energy in buildings.

Both Oak Ridge and Berkeley Lab are recognized leaders in energy efficient buildings, having conducted hundreds of millions of dollars of research in the field in the past decade. On top of that, Berkeley Lab has been awarded more than $32 million in funding through the American Recovery and Reinvestment Act for work on energy-efficient buildings, including $15.9 million to build a national user facility containing a series of test beds for researchers to test and optimize various systems.

Subject to agreement with the Chinese partners, the six major research areas to be undertaken are: advanced monitoring and control systems, advanced glazing materials and systems, advanced insulation systems, cool roofs, lighting and commercialization and policy analyses. Some examples of technologies the Center will work on include low-cost insulation, especially for rural areas, which has the potential to substantially reduce coal use in northern China, and computer tools for evaluating window performance under different conditions and building configurations, to be applied in two cities in China and two in the United States.

Additionally, the Center will build a test bed facility for evaluating the performance of technologies and systems developed by the researchers. The facility will be located at a one-story building at a partner organization in China, such as a university. The test bed could become a long-term research facility to be used by generations of building energy engineers and scientists.

President Obama and President Hu Jintao formally announced the establishment of the CERC during the President's trip to Beijing last November.

####

About Lawrence Berkeley National Laboratory
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California.

For more information, please click here

Contacts:
Julie Chao
(510) 486-6491

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Openings/New facilities/Groundbreaking/Expansion

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

GLOBALFOUNDRIES Expands to Meet Worldwide Customer Demand: Company invests for capacity growth in the United States, Germany, China and Singapore February 10th, 2017

Portable superconductivity systems for small motors: Cambridge University lab achieves a breakthrough for portable superconductivity systems that are applicable for small motors, health care and other uses February 8th, 2017

Govt.-Legislation/Regulation/Funding/Policy

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Announcements

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Environment

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Energy

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Home

Rice lab expands palette for color-changing glass: Nanophotonics team creates low-voltage, multicolor, electrochromic glass March 8th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Alliances/Trade associations/Partnerships/Distributorships

Oxford Instruments Plasma Technology announces a new partner in Korea August 15th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Technology Companies Join Forces for TEM Imaging and Analysis August 3rd, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GF’s 22FDX® technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Solar/Photovoltaic

Fewer defects from a 2-D approach August 15th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Construction

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Next-gen steel under the microscope March 18th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project