Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > CEA-Leti and SPTS to Collaborate On Next-Generation TSV Development

Abstract:
Leading Research Institute and Equipment Maker to Develop New Process Technologies for 3D-ICs

CEA-Leti and SPTS to Collaborate On Next-Generation TSV Development

Tokyo & Grenoble, France | Posted on October 6th, 2010

CEA-Leti and SPP Process Technology Systems (SPTS) today announced they have agreed to develop advanced 300mm through-silicon via (TSV) 3D-IC processes at CEA-Leti's 300mm facilities in Grenoble, France. The agreement defines their collaboration on a range of 3D TSV processes to optimize etch and deposition technologies used to create next-generation high aspect ratio TSVs.

The partners will research alternative hardware and processes to address the need for new methods of cost-effective via fill. In some via-middle applications, where the via is created between contact and first back-end-of-line (BEOL) metal layer, via aspect ratios may extend beyond 10:1, and these very high aspect ratios require a new approach to current etch and deposition techniques.

"This agreement supports our mission of creating innovation and transferring it to industry," said Dr. Laurent Malier, CEO of CEA-Leti. "3D-IC technology plays a key role in enabling cost-effective performance for the entire micro-electronics industry. Whether for nomadic devices, data centers, MEMs or optical devices, 3D-ICs form the basis of building cost-effective, high performance chips with multiple functionalities. Combining Leti's advanced research and development knowledge with the technical expertise from an equipment manufacturer with proven production capabilities will cover the complete range of Copper-based TSV processes."

"We are thrilled that this agreement brings two organizations together in an environment optimized for joint equipment-and-process development," said Kevin Crofton, managing director, SPTS UK Division, and executive vice president, SPTS. "Our etch, physical vapor deposition (PVD) and chemical vapor deposition (CVD) systems are acknowledged technology leaders in the field of TSVs. Leti and SPTS understand the importance and value of creating an optimized TSV solution, and both acknowledge that it is most effective when the wafer-processing-technology and device experts are working together on integrated process flows."

"The strong relationship between our two organizations continues with this agreement," added Susumu Kaminaga, chairman of SPTS and president of Sumitomo Precision Products (SPP). "Building on a tradition of close collaboration, this agreement benefits the TSV community with research findings that will increase device performance on more cost-competitive packages."

TSV technology is quickly gaining industry prominence as this method of 3D integration facilitates a thinner interconnect layer between stacked devices, allowing higher density interconnectivity to produce better electrical performance, all resulting in increased functionality and cost-efficiencies.

####

About CEA-Leti
CEA is a French research and technology public organisation, with activities in four main areas: energy, information technologies, healthcare technologies and defence and security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. CEA-Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and microsystems (MEMS) are at the core of its activities. As a major player in MINATEC campus, CEA-Leti operates 8,000-m² state-of-the-art clean rooms, on 24/7 mode, on 200mm and 300mm wafer standards. With 1,200 employees, CEA-Leti trains more than 150 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, CEA-Leti puts a strong emphasis on intellectual property and owns more than 1,500 patent families.

For more information about Leti, please visit www.leti.fr.

About SPTS
SPP Process Technology Systems was established in October 2009 as the vehicle for the merger of Surface Technology Systems and to acquire assets of Aviza Technology. The company is a wholly-owned subsidiary of Sumitomo Precision Products Co., LTD, and designs, manufactures, sells, and supports advanced semiconductor capital equipment and process technologies for the global semiconductor industry and related markets. These products are used in a variety of market segments, including R&D, data storage, MEMS and nanotechnology, advanced 3-D packaging, LEDs, and power integrated circuits for communications. For more information on SPTS please see www.spp-pts.com

About Sumitomo Precision Products Co., Ltd
Sumitomo Precision Products Co., Ltd, headquartered in Amagasaki (Japan), has, over the past 90 years, expanded from their core field of aerospace products into such diverse areas as heat-exchangers and heat-control systems, industrial machinery employing hydraulic control, equipment for semiconductor and flat panel display production, ozone generators for protecting the environment and unique motion sensors. For more information about SPP, please visit www.spp.co.jp

For more information, please click here

Contacts:
Media Contact:
SPP Process Technology Systems (SPTS)
Evelyn Tay
+44 1633 414058


CEA-Leti
Thierry Bosc
+33 4 38 78 31 95


Agency
Amélie Ravier
+33 1 58 18 59 30

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chip Technology

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Announcements

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Tools

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Alliances/Trade associations/Partnerships/Distributorships

GLOBALFOUNDRIES Expands Partner Program to Speed Time-to-Market of FDX™ Solutions: Increased support affirms FDXcelerator™ Program’s vital role in promoting broader deployment of GLOBALFOUNDRIES’ FDX™ portfolio December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project