Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Improved Labs Energize Biomass Research

NREL scientist Bryon Donohoe works in the Cellular Visualization room of the Biomass Surface Characterization Lab, looking at different views of ultra structures of pre treated biomass materials. One of the first labs in the Bioenergy Center to undergo a facelift, it is now visually one of the most striking. Credit: Dennis Schroeder
NREL scientist Bryon Donohoe works in the Cellular Visualization room of the Biomass Surface Characterization Lab, looking at different views of ultra structures of pre treated biomass materials. One of the first labs in the Bioenergy Center to undergo a facelift, it is now visually one of the most striking. Credit: Dennis Schroeder

Abstract:
When you've lived in the same "home" for more than 20 years, a time comes when you need to upgrade your furnishings to keep current and spruce things up a bit. That is exactly what has happened at the U.S. Department of Energy's National Renewable Energy Laboratory. NREL is home to the National Bioenergy Center where eight of the research labs hadn't been updated in years.

By Heather Lammers

Improved Labs Energize Biomass Research

Boulder, CO | Posted on September 18th, 2010

Technologies to convert plants into fuels are on the cutting edge when it comes to helping the U.S. wean itself from foreign oil. But the old laboratory designs were not helping NREL researchers in their efforts to be as efficient as possible.

"The way that labs are designed today is much different than 20 years ago and the old labs were inadequate to support the capabilities we've developed in research and analysis," said National Bioenergy Center Director Mike Cleary. "The reconfigured labs make much better use of the space and will make us much more efficient in achieving our milestones."

Biomass Compositional Analysis Lab

To successfully produce cellulosic ethanol, you need to know what is in the plant that you are trying to break apart. The team working in NREL's Biomass Compositional Analysis Lab can tell you exactly what you are dealing with. The lab's core work is preparing biomass samples for analysis. The generated data, is fed into models for pretreatment, fermentation and other predictive tools.

"The Biomass Compositional Analysis Lab is the tip of the sword in the ethanol process," said NREL Senior Researcher Ed Wolfrum. "Here we examine the feedstock to see what's in it and how can that be used to make ethanol."

While the idea is a simple one, getting the work done was once a challenging shuffle between labs. "It used to be that we had four labs scattered everywhere throughout the building and samples were moved from lab to lab," NREL Scientist Justin Sluiter said. "We now have a single location where everyone can work together — a place that we can come home."

Being comfortable in their new home is important because the process to analyze biomass can take up to eight days with as many as 15 people working in the lab. "At the end of the day, we have a complete analysis of a biomass sample," Sluiter said. "We know how much glucose, xylose, lignin, ash, protein is in there — we know everything."

Interest in this type of work has grown along with the ethanol industry. "We've gotten a lot busier and the respect for the type of analysis work that NREL does continues to grow," Sluiter added. "People are starting to try to do this type of work themselves but end up coming to NREL because it is a lot harder than it seems and we are really good at it."

Biomass Surface Characterization Lab
One of the first labs in the Bioenergy Center to undergo a facelift now is visually one of the most striking. NREL's Biomass Surface Characterization Laboratory is focused on biomass recalcitrance research. Recalcitrance is the natural resistance of plant cell walls to deconstruction. This natural resistance is a key barrier to the development of next-generation biofuels.

Six different rooms in the Biomass Surface Characterization Lab house a plethora of imaging and visualization equipment including:

* Atomic force microscopy
* Transmission electron microscopy
* Scanning electron microscopy
* Total internal reflectance fluorescence microscopy
* Scanning laser confocal microscopy

However, the centerpiece of the lab's makeover is the visualization room. The room's bank of monitors and computers provide multiple colorful slices of a biomass sample. To get these images, a microscopic amount of biomass is embedded in resin and then sectioned, nanometers thin, under a specialized ultramicrotome. Before the addition of the visualization room, researchers spent time at the microscopes examining the digital snapshots of the biomass.

"Image processing and image analysis can now be done away from the microscopes, freeing them up for the next person to come in and capture data," said NREL Senior Scientist Bryon Donohoe. "This greatly improves the efficiency of how the microscopes are used."

The new room also allows colleagues to discuss side-by-side images of a biomass sample as seen by different imaging modes. "Small groups of experts will sit here and look at their fresh-off-the-microscope data but in a way that brings up all of the correlative images at once," Donohoe said. "Bringing these images together helps people understand what really is happening and whether what we did to the biomass is really helping it to break apart and break down into sugars to be converted into fuels."

The visualization room also has proven to be a valuable educational tool for NREL. "Small groups visiting NREL can enter the lab and see a dynamic scientific poster," Donohoe said. "We can show them the real data we generate and how it fits together into a story. Humans are visual creatures and after people see images, they tell us that that they can begin to understand what it is we are doing. Once you have that picture in your mind, it's easier to think more deeply about what the problems are and how we can solve them."

Molecular Beam Mass Spectrometry Lab

NREL's biomass thermochemical conversion technologies and research also got a boost with the updated Molecular Beam Mass Spectrometry Lab. Thermochemical conversion technologies make fuels from biomass using heat resulting in syngas or pyrolysis oil. During this process, a Molecular Beam Mass Spectometry system (MBMS) extracts and analyzes the gases. The lab remodel means that researchers now have access to new equipment and workspace.

"We acquired two new MBMS instruments and needed space to install and use them," NREL's Mark Davis said. "Everything is now centralized, which now allows us to use all pieces of equipment at once rather than one at time. We are able to tailor the experiment that we want to do to the result that we want to get, rather than to the equipment available."

The reason the added equipment is so valuable to NREL is that, according to Davis, "mass spectrometry enables us to have a fundamental understanding of thermochemical biomass conversion." The MBMS gives researchers online, real-time measurements of the gasification processes and also provides rapid readings on plant cell wall and lignin structure.

Other research institutions and private industry also seek this technology. Work done with the MBMS supports the BioEnergy Science Center (BESC), a collaboration of 20 university, industrial and national laboratory partners developing insight into the factors controlling the release of sugar in biomass feedstocks. The two new MBMS systems are being used for all of the collaborative work coming to NREL via the BESC.

NREL also has developed portable versions of the MBMS, which researchers can take to operating biomass gasifiers to measure their gas stream in real time and provide suggestions to help optimize their process.

Biomass Catalyst Characterization Lab

Catalysts are used in thermochemical processes to convert tars (a byproduct of gasification) to syngas and then to convert syngas to liquid fuels. In the Biomass Catalyst Characterization Lab, NREL teams are working to understand and enhance the performance of catalysts to help realize the production of efficient biomass-derived fuels.

"The overarching goal of the Biomass Catalyst Characterization Laboratory is to intelligently design, characterize, and evaluate next generation catalysts for the efficient thermochemical conversion of biomass to fuels," NREL Principal Scientist Kim Magrini said. "We have the ability to look at things like surface area, particle size and distribution, and surface and bulk elemental analysis."

Working primarily with metals and ceramics, researchers in the Biomass Catalyst Characterization Lab use high temperatures to convert biomass to fuel. The recent upgrades to this lab gave researchers tools such as:

* New tabletop microscopy equipment that can take a snapshot of the catalyst surfaces and give an elemental readout at the same time;
* Four new high temperature reaction systems with real time product analysis;
* High temperature Raman microscope cells that enable scientists to study catalytic reactions while they are happening;
* Two-dimensional gas chromatography mass spectrometer that tells researchers what is in very complex liquids like pyrolysis oil. That information helps teams come up with ways to manipulate oil chemistry and turn it into fuels.

"Materials development and characterization is at the heart of any industrialized process that takes biomass to fuels," Magrini said. "These new reactors and instruments help us understand how they work and then how we can make them work better."


####

For more information, please click here

Copyright © National Renewable Energy Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Ethics

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Synthetic biology needs robust safety mechanisms before real world application: Ethics and technology hold the key to the success of synthetic biology September 17th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

PETA science consortium to present at Society for Risk Analysis meeting December 10th, 2014

Academic/Education

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Tools

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

Environment

Can crab shells provide a 'green' solution to malaria? Study shows how a mixture of chitin and silver nanoparticles inhibits growth of mosquito larvae May 12th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project