Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UCSF unveils model for implantable artificial kidney to replace dialysis

A model of the implantable bioartificial kidney shows the two-stage system. Thousands of nanoscale filters remove toxins from the blood, while a BioCartridge of renal tubule cells mimics the metabolic and water-balance roles of the human kidney.
A model of the implantable bioartificial kidney shows the two-stage system. Thousands of nanoscale filters remove toxins from the blood, while a BioCartridge of renal tubule cells mimics the metabolic and water-balance roles of the human kidney.

Abstract:
UCSF researchers today unveiled a prototype model of the first implantable artificial kidney, in a development that one day could eliminate the need for dialysis.

UCSF unveils model for implantable artificial kidney to replace dialysis

San Francisco, CA | Posted on September 6th, 2010

The device, which would include thousands of microscopic filters as well as a bioreactor to mimic the metabolic and water-balancing roles of a real kidney, is being developed in a collaborative effort by engineers, biologists and physicians nationwide, led by Shuvo Roy, PhD, in the UCSF Department of Bioengineering and Therapeutic Sciences.

The treatment has been proven to work for the sickest patients using a room-sized external model developed by a team member in Michigan. Roy's goal is to apply silicon fabrication technology, along with specially engineered compartments for live kidney cells, to shrink that large-scale technology into a device the size of a coffee cup. The device would then be implanted in the body without the need for immune suppressant medications, allowing the patient to live a more normal life.

"This device is designed to deliver most of the health benefits of a kidney transplant, while addressing the limited number of kidney donors each year," said Roy, an associate professor in the UCSF School of Pharmacy who specializes in developing micro-electromechanical systems (MEMS) technology for biomedical applications. "This could dramatically reduce the burden of renal failure for millions of people worldwide, while also reducing one of the largest costs in U.S. healthcare."

The team has established the feasibility of an implantable model in animal models and plans to be ready for clinical trials in five to seven years.

End-stage renal disease, or chronic kidney failure, affects more than 500,000 people per year in the United States alone, and currently is only fully treated with a kidney transplant. That number has been rising between 5-7 percent per year, Roy said, in part because of the kidney damage associated with diabetes and hypertension.

Yet transplants are difficult to obtain: a mere 17,000 donated kidneys were available for transplant last year, while the number of patients on the transplant waiting list currently exceeds 85,000, according to the Organ Procurement ant Transplant Network.

Roughly 350,000 patients are reliant on kidney dialysis, Roy explained, which comes at a tremendous cost. The Medicare system alone spends $25 billion on treatments for kidney failure - more than 6 percent of the total budget - while the disease affects only 1 percent of Medicare recipients, he said. That cost includes almost $75,000 per patient each year for dialysis, according to the U.S. Renal Data System.

Dialysis also takes a human toll. A typical dialysis schedule is three sessions per week, for 3 to 5 hours per session, in which blood is pumped through an external circuit for filtration. This is exhausting for patients and only replaces 13 percent of kidney function, Roy said. As a result, only 35 percent of patients survive for more than 5 years.

With the limited supply of donors, that means thousands of patients die each year waiting for a kidney.

The implantable device aims to eradicate that problem. The two-stage system uses a hemofilter to remove toxins from the blood, while applying recent advances in tissue engineering to grow renal tubule cells to provide other biological functions of a healthy kidney. The process relies on the body's blood pressure to perform filtration without needing pumps or an electrical power supply.

The project exemplifies the many efforts under way at UCSF to build collaborations across scientific disciplines that accelerate the translation of academic research into real solutions for patients, according to Mary Anne Koda-Kimble, PharmD, dean of the UCSF School of Pharmacy.

"This is a perfect example of the work we are doing at UCSF to address some of the most critical medical issues of our time, both in human and financial costs," Koda-Kimble said. "This project shows what can be accomplished by teams of scientists with diverse expertise, collaborating to profoundly and more quickly improve the lives of patients worldwide."

The creation of the Department of Bioengineering and Therapeutic Sciences - a joint department in the UCSF schools of Pharmacy and Medicine - was itself an effort to promote translational research at UCSF by forming collaborations across biomedical specialties. Roy is also a founding faculty member of the UCSF Pediatric Device Consortium, which aims to accelerate the development of innovative devices for children health, and a faculty affiliate of the California Institute for Quantitative Biosciences (QB3) at UCSF.

His team is collaborating with 10 other teams of researchers on the project, including the Cleveland Clinic where Roy initially developed the idea, Case Western Reserve University, University of Michigan, Ohio State University, and Penn State University.

The first phase of the project, which has already been completed, focused on developing the technologies required to reduce the device to a size that could fit into the body and testing the individual components in animal models. In the second and current phase, the team is doing the sophisticated work needed to scale up the device for humans. The team now has the components and a visual model and is pursuing federal and private support to bring the project to clinical use.

####

About University of California, San Francisco
UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

For more information, please click here

Contacts:
Kristen Bole

(415) 502-NEWS (6397)

Copyright © University of California, San Francisco

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Possible Futures

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

PEN Inc. Chairman Scott Rickert Announces Company Vision, Product Priorities and Management Team: Webcast Highlights the Launch of PEN October 3rd, 2014

Academic/Education

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

MEMS

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

Mirrorcle Technologies Opens New Company Headquarters May 27th, 2014

Nanomedicine

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Tuning light to kill deep cancer tumors: Nanoparticles developed at UMass Medical School advance potential clinical application for photodynamic therapy October 15th, 2014

Announcements

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Nanobiotechnology

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

DNA nano-foundries cast custom-shaped metal nanoparticles: DNA's programmable assembly is leveraged to form precise 3D nanomaterials for disease detection, environmental testing, electronics and beyond October 10th, 2014

Charged graphene gives DNA a stage to perform molecular gymnastics October 9th, 2014

Nanoparticles get a magnetic handle: New method produces particles that can glow with color-coded light and be manipulated with magnets October 9th, 2014

Research partnerships

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Bio-inspired 'nano-cocoons' offer targeted drug delivery against cancer cells October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE