Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Development of World’s Highest Performance Thin Film Condenser

Abstract:
High-k Dielectric Nanosheets Realizes the Smallest, Highest Capacitance Device

Development of World’s Highest Performance Thin Film Condenser

Tokyo | Posted on August 30th, 2010

A research group headed by MANA Scientist Dr. Minoru Osada and Principal Investigator Dr. Takayoshi Sasaki of the International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono) at the National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda) discovered a new high-k dielectric nanosheet with a molecular level thickness (~1.5 nm), and successfully developed the world's highest performance thin-film condenser by a solution-based bottom-up nanotechnology.

Condensers based on dielectric thin films are a key component of electronic devices, where they perform essential functions such as storing electrical charge, and blocking direct current while allowing alternating currents to propagate. Because condensers are the largest components in our electronic equipments such as cell phones, personal computers, etc., extensive efforts are directed at the developments of high performance condensers with smaller size and higher capacitance. Central to these researches is the design and integration of ultrathin high-k dielectrics such as perovskite-structure BaTiO3 and (Ba1-xSrx)TiO3, which should provide more capacitance per unit area of device. However, current perovskite thin films yield reduced dielectric constants that are one order of magnitudesmaller than bulk values. This so-called size effect is a long-standing conundrum in perovskite dielectrics, which limits further miniaturization and enhanced capacitance in condensers devices.

This research group conducted a search for new high-k nanodielectrics, and discovered a moleculary thin high-k nanosheet (perovsikte nanosheet) that afford robust high-k properties even at several nanometer thicknesses, allowing high capacitances. By solution-based bottom-up approach using perovskite nanosheets, the group successfully fabricated thin-film condensers directly on SrRuO3 or Pt substrates with a clean interface. These devices exhibited a high capacitance density (with dielectric constant of 210 - 240), the largest value seen so far in current perovskite films with the thickness down to 10 nm. This result enables further miniaturization and enhanced capacitance in thin film condensers, and opens a new route to the development of high performance condenser devices desirable for future electronic equipments.

This research was carried out as part of the research project "Development of Nanomaterials/Manufacturing Processes for Next-generation Electronics Using Inorganic Nanosheets" (Project Leader: Takayoshi Sasaki) in the "Establishment of Innovative Manufacturing Technology Based on Nanotechnology" Research Area ofthe Core Research of Evolutional Science & Technology (CREST) Program of the Japan Science and Technology Agency (JST). This result was published in the online edition of ACS Nano (the American Chemical Society) on August 24 (local time).


####

For more information, please click here

Contacts:
NIMS Public Relations Office
TEL:+81-29-859-2026
FAX:+81-29-859-2017

Copyright © National Institute for Materials Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Thin films

ANU invention to inspire new night-vision specs December 7th, 2016

Ultra-thin ferroelectric material for next-generation electronics October 12th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Nanoelectronics

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project