Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Development of World’s Highest Performance Thin Film Condenser

Abstract:
High-k Dielectric Nanosheets Realizes the Smallest, Highest Capacitance Device

Development of World’s Highest Performance Thin Film Condenser

Tokyo | Posted on August 30th, 2010

A research group headed by MANA Scientist Dr. Minoru Osada and Principal Investigator Dr. Takayoshi Sasaki of the International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono) at the National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda) discovered a new high-k dielectric nanosheet with a molecular level thickness (~1.5 nm), and successfully developed the world's highest performance thin-film condenser by a solution-based bottom-up nanotechnology.

Condensers based on dielectric thin films are a key component of electronic devices, where they perform essential functions such as storing electrical charge, and blocking direct current while allowing alternating currents to propagate. Because condensers are the largest components in our electronic equipments such as cell phones, personal computers, etc., extensive efforts are directed at the developments of high performance condensers with smaller size and higher capacitance. Central to these researches is the design and integration of ultrathin high-k dielectrics such as perovskite-structure BaTiO3 and (Ba1-xSrx)TiO3, which should provide more capacitance per unit area of device. However, current perovskite thin films yield reduced dielectric constants that are one order of magnitudesmaller than bulk values. This so-called size effect is a long-standing conundrum in perovskite dielectrics, which limits further miniaturization and enhanced capacitance in condensers devices.

This research group conducted a search for new high-k nanodielectrics, and discovered a moleculary thin high-k nanosheet (perovsikte nanosheet) that afford robust high-k properties even at several nanometer thicknesses, allowing high capacitances. By solution-based bottom-up approach using perovskite nanosheets, the group successfully fabricated thin-film condensers directly on SrRuO3 or Pt substrates with a clean interface. These devices exhibited a high capacitance density (with dielectric constant of 210 - 240), the largest value seen so far in current perovskite films with the thickness down to 10 nm. This result enables further miniaturization and enhanced capacitance in thin film condensers, and opens a new route to the development of high performance condenser devices desirable for future electronic equipments.

This research was carried out as part of the research project "Development of Nanomaterials/Manufacturing Processes for Next-generation Electronics Using Inorganic Nanosheets" (Project Leader: Takayoshi Sasaki) in the "Establishment of Innovative Manufacturing Technology Based on Nanotechnology" Research Area ofthe Core Research of Evolutional Science & Technology (CREST) Program of the Japan Science and Technology Agency (JST). This result was published in the online edition of ACS Nano (the American Chemical Society) on August 24 (local time).


####

For more information, please click here

Contacts:
NIMS Public Relations Office
TEL:+81-29-859-2026
FAX:+81-29-859-2017

Copyright © National Institute for Materials Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Thin films

LAMDAMAP 2015 hosted by the University March 26th, 2015

A new method for making perovskite solar cells March 16th, 2015

Engineers create chameleon-like artificial 'skin' that shifts color on demand March 12th, 2015

Researchers synthesize new thin-film material for use in fuel cells: Article in the journal APL Materials shows how to grow Bi2Pt2O7 pyrochlore, potentially a more effective cathode for future fuel cells March 10th, 2015

Nanoelectronics

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Announcements

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE