Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sensor important to understanding root, seedling development

Marshall Porterfield, at left, and Angus Murphy will be able to better understand how the plant hormone auxin regulates plant root growth and seedling establishment with a biosensor developed at Purdue University. (Purdue Agricultural Communication photo/Tom Campbell)
Marshall Porterfield, at left, and Angus Murphy will be able to better understand how the plant hormone auxin regulates plant root growth and seedling establishment with a biosensor developed at Purdue University. (Purdue Agricultural Communication photo/Tom Campbell)

Abstract:
A biosensor utilizing black platinum and carbon nanotubes developed at Purdue University will help give scientists a better understanding of how the plant hormone auxin regulates root growth and seedling establishment.

Sensor important to understanding root, seedling development

West Lafayette, IN | Posted on August 23rd, 2010

Marshall Porterfield, an associate professor of agricultural and biological engineering and biomedical engineering, created a new sensor to detect the movement of auxin along a plant's root surface in real time without damaging the plants.

The nanomaterials at the sensor's tip react with auxin and create an electrical signal that can be measured to determine the auxin concentration at a single point. The sensor oscillates, taking concentration readings at different points around a plant root. An algorithm then determines whether auxin is being released or taken in by surrounding cells.

"It is the equilibrium and transport dynamics that are important with auxin," said Porterfield, whose findings were published in the early online version of The Plant Journal.

A current focus of auxin research is understanding how this hormone regulates root growth in plants growing on sub-optimal soils. Angus Murphy, a Purdue professor of horticulture and the paper's co-author, said that worldwide pressure on land for food and energy crops drives efforts to better understand how plant roots adapt to marginal soils. Auxin is one of the major hormones involved in that adaptive growth.

"It's the key effector of these processes," Murphy said.

Although sensors using similar nanomaterials have been in use for real-time measurement of auxin levels along a root surface for several years, those earlier sensors required application of external auxin at toxic levels as part of the measurement process. Porterfield and Eric McLamore, a former Purdue postdoctoral researcher, created a new algorithm to decode the information obtained from the sensor. The algorithm processes the sensor information to show whether the hormone is moving into or out of cells. This allows the sensor to be self-referencing, eliminates the need for auxin application, and allows instantaneous and continuous measurements to be made during root growth.

Other current methods based on radioisotope tracers and auxin-responsive fluorescent proteins inserted into the plant can detect changes taking place over hours. Most auxin responses take place on a timescale of minutes.

Murphy said auxin movement is key to how plants adapt to their environments. He said that the effort to develop the sensor with Porterfield originated with the need to improve real-time measurement capability and develop a method that allows comparison with other measurements to better understand how auxin transport and other biological functions are connected.

"Using sensors like this, we can get answers that just aren't possible with existing tools," Murphy said. "Being able to measure the efflux and uptake simultaneously is really essential to a lot of ongoing work."

Murphy and Porterfield were looking for a simple model to use to test the sensor and chose an auxin transport mutant in corn. Wendy Peer, a Purdue assistant professor of horticulture and a paper co-author who studies seedling development and establishment, collaborated with Murphy in a detailed analysis of auxin transport in mutant and control corn roots using traditional methods. The information was then used to validate the sensor's functionality.

Murphy plans to continue testing on other auxin-related mutants. The National Science Foundation and the U. S. Department of Energy funded the research.

ABSTRACT

Non-invasive Quantification of Endogenous Root Auxin Transport Using an Integrated Flux Microsensor Technique

E. S. McLamore, A. Diggs, P. Calvo Marzal, J. Shi, J. J. Blakeslee, W.A. Peer,
A. S. Murphy, and D. M. Porterfield

Indole-3-acetic acid (IAA) is a primary phytohormone that regulates multiple aspects of plant development. Because polar transport of IAA is an essential determinant of organogenesis and dynamic tropic growth, methods to monitor IAA movement in vivo are in demand. A self-referencing electrochemical microsensor was optimized to non-invasively measure endogenous IAA flux near the surface of Zea mays roots without the addition of exogenous IAA. Enhanced sensor surface modification, decoupling of acquired signals, and integrated flux analyses were combined to provide direct, real time quantification of endogenous IAA movement in B73 maize inbred and brachytic2 (br2) auxin transport mutant roots. BR2 is localized in epidermal and hypodermal tissues at the root apex. br2 roots exhibit reduced shootward IAA transport at the root apex in radiotracer experiments and reduced gravitropic growth. IAA flux data indicates that maximal transport occurs in the distal elongation zone of maize roots, and net transport in/out of br2 roots was decreased compared to B73. Integration of short term real time flux data in this zone revealed oscillatory patterns, with B73 exhibiting shorter oscillatory periods and greater amplitude than br2. IAA efflux and influx were inhibited using 1-N-naphthylphthalamic acid (NPA), and 2-naphthoxyacetic acid (NOA), respectively. A simple harmonic oscillation model of these data produced a correlation between modeled and measured values of 0.70 for B73 and 0.69 for br2. These results indicate that this technique is useful for real-time IAA transport monitoring in surface tissues and that this approach can be performed simultaneously with current live imaging techniques.

####

For more information, please click here

Contacts:
Writer: Brian Wallheimer
765-496-2050


Sources: Marshall Porterfield
765-494-1190


Angus Murphy
765-496-7956


Ag Communications: (765) 494-2722;
Keith Robinson,

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

2018 Kavli Prizes in Astrophysics, Nanoscience, and Neuroscience to be Announced Live on May 31: Live announcement at the Norwegian Academy of Science and Letters to be streamed live at World Science Festival Event May 24th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Possible Futures

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Academic/Education

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Lifeboat Foundation funds flying 3D-printed classroom cubesats with Perlan II April 16th, 2018

SUNY Poly’s Center for Semiconductor Research in Albany Earns World-Class TÜV SÜD AMERICA INC. ISO 9001:2015 Certification: Albany NanoTech Complex Certification Assures Top-Tier Quality in Semiconductor Test Structures; Certification a First for a SUNY Campus March 6th, 2018

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Plasmons triggered in nanotube quantum wells: Rice, Tokyo Metropolitan scientists create platform for unique near-infrared devices March 16th, 2018

Sensors

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Strain improves performance of atomically thin semiconductor material May 11th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Doing the nano-shimmy: New device modulates light and amplifies tiny signals April 12th, 2018

Announcements

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

2018 Kavli Prizes in Astrophysics, Nanoscience, and Neuroscience to be Announced Live on May 31: Live announcement at the Norwegian Academy of Science and Letters to be streamed live at World Science Festival Event May 24th, 2018

Food/Agriculture/Supplements

HTA to Present European Strategy for Competitive Micro- and Nanotechnologies & Smart Systems: Special Event in Brussels on April 24 Gathers Research Institutes’ CEOs, European Commissioners and Key European Industrials April 17th, 2018

Twisting laser light offers the chance to probe the nano-scale: A new method to sensitively measure the structure of molecules has been demonstrated by twisting laser light and aiming it at miniscule gold gratings to separate out wavelengths: April 5th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project