Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers 'stretch' a lackluster material into a possible electronics revolution

Abstract:
It's the Clark Kent of oxide compounds, and - on its own - it is pretty boring. But slice europium titanate nanometers thin and physically stretch it, and then it takes on super hero-like properties that could revolutionize electronics, according to new Cornell research. (Nature, Aug. 19, 2010.)

Researchers 'stretch' a lackluster material into a possible electronics revolution

Ithaca, NY | Posted on August 20th, 2010



Researchers report that thin films of europium titanate become both ferroelectric (electrically polarized) and ferromagnetic (exhibiting a permanent magnetic field) when stretched across a substrate of dysprosium scandate, another type of oxide. The best simultaneously ferroelectric, ferromagnetic material to date pales in comparison by a factor of 1,000.

Simultaneous ferroelectricity and ferromagnetism is rare in nature and coveted by electronics visionaries. A material with this magical combination could form the basis for low-power, highly sensitive magnetic memory, magnetic sensors or highly tunable microwave devices.

The search for ferromagnetic ferroelectrics dates back to 1966, when the first such compound - a nickel boracite - was discovered. Since then, scientists have found a few additional ferromagnetic ferroelectrics, but none stronger than the nickel compound - that is, until now.

"Previous researchers were searching directly for a ferromagnetic ferroelectric - an extremely rare form of matter," said Darrell Schlom, Cornell professor of materials science and engineering, and an author on the paper.

"Our strategy is to use first-principles theory to look among materials that are neither ferromagnetic nor ferroelectric, of which there are many, and to identify candidates that, when squeezed or stretched, will take on these properties," said Craig Fennie, assistant professor of applied and engineering physics, and another author on the paper.

This fresh strategy, demonstrated using the europium titanate, opens the door to other ferromagnetic ferroelectrics that may work at even higher temperatures using the same materials-by-design strategy, the researchers said.

Other authors include David A. Muller, Cornell professor of applied and engineering physics; and first author June Hyuk Lee, a graduate student in Schlom's lab.

The researchers took an ultra-thin layer of the oxide and "stretched" it by placing it on top of the disprosium compound. The crystal structure of the europium titanate became strained because of its tendency to align itself with the underlying arrangement of atoms in the substrate.

Fennie's previous theoretical work had indicated that a different kind of material strain - more akin to squishing by compression - would also produce ferromagnetism and ferroelectricity. But the team discovered that the stretched europium compound displayed electrical properties 1,000 times better than the best-known ferroelectric/ferromagnetic material thus far, translating to thicker, higher-quality films.

This new approach to ferromagnetic ferroelectrics could prove a key step toward the development of next-generation memory storage, superb magnetic field sensors and many other applications long dreamed about. But commercial devices are a long way off; no devices have yet been made using this material. The Cornell experiment was conducted at an extremely cold temperature - about 4 degrees Kelvin (-452 Fahrenheit). The team is already working on materials that are predicted to show such properties at much higher temperatures.

The team includes researchers from Penn State University, Ohio State University and Argonne National Laboratory.

The research was supported by the Cornell Center for Materials Research, a National Science Foundation-funded Materials Research and Engineering Center (MRSEC), and corresponding MRSECs at Penn State and Ohio State.

####

For more information, please click here

Contacts:
Blaine Friedlander

607-254-8093

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Memory Technology

Ensuring the future affordability of wind turbines, computers and electric cars June 2nd, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history April 19th, 2016

Sensors

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Drum beats from a one atom thick graphite membrane June 15th, 2016

Nanoelectronics

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

Discoveries

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Materials/Metamaterials

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic