Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers 'stretch' a lackluster material into a possible electronics revolution

Abstract:
It's the Clark Kent of oxide compounds, and - on its own - it is pretty boring. But slice europium titanate nanometers thin and physically stretch it, and then it takes on super hero-like properties that could revolutionize electronics, according to new Cornell research. (Nature, Aug. 19, 2010.)

Researchers 'stretch' a lackluster material into a possible electronics revolution

Ithaca, NY | Posted on August 20th, 2010



Researchers report that thin films of europium titanate become both ferroelectric (electrically polarized) and ferromagnetic (exhibiting a permanent magnetic field) when stretched across a substrate of dysprosium scandate, another type of oxide. The best simultaneously ferroelectric, ferromagnetic material to date pales in comparison by a factor of 1,000.

Simultaneous ferroelectricity and ferromagnetism is rare in nature and coveted by electronics visionaries. A material with this magical combination could form the basis for low-power, highly sensitive magnetic memory, magnetic sensors or highly tunable microwave devices.

The search for ferromagnetic ferroelectrics dates back to 1966, when the first such compound - a nickel boracite - was discovered. Since then, scientists have found a few additional ferromagnetic ferroelectrics, but none stronger than the nickel compound - that is, until now.

"Previous researchers were searching directly for a ferromagnetic ferroelectric - an extremely rare form of matter," said Darrell Schlom, Cornell professor of materials science and engineering, and an author on the paper.

"Our strategy is to use first-principles theory to look among materials that are neither ferromagnetic nor ferroelectric, of which there are many, and to identify candidates that, when squeezed or stretched, will take on these properties," said Craig Fennie, assistant professor of applied and engineering physics, and another author on the paper.

This fresh strategy, demonstrated using the europium titanate, opens the door to other ferromagnetic ferroelectrics that may work at even higher temperatures using the same materials-by-design strategy, the researchers said.

Other authors include David A. Muller, Cornell professor of applied and engineering physics; and first author June Hyuk Lee, a graduate student in Schlom's lab.

The researchers took an ultra-thin layer of the oxide and "stretched" it by placing it on top of the disprosium compound. The crystal structure of the europium titanate became strained because of its tendency to align itself with the underlying arrangement of atoms in the substrate.

Fennie's previous theoretical work had indicated that a different kind of material strain - more akin to squishing by compression - would also produce ferromagnetism and ferroelectricity. But the team discovered that the stretched europium compound displayed electrical properties 1,000 times better than the best-known ferroelectric/ferromagnetic material thus far, translating to thicker, higher-quality films.

This new approach to ferromagnetic ferroelectrics could prove a key step toward the development of next-generation memory storage, superb magnetic field sensors and many other applications long dreamed about. But commercial devices are a long way off; no devices have yet been made using this material. The Cornell experiment was conducted at an extremely cold temperature - about 4 degrees Kelvin (-452 Fahrenheit). The team is already working on materials that are predicted to show such properties at much higher temperatures.

The team includes researchers from Penn State University, Ohio State University and Argonne National Laboratory.

The research was supported by the Cornell Center for Materials Research, a National Science Foundation-funded Materials Research and Engineering Center (MRSEC), and corresponding MRSECs at Penn State and Ohio State.

####

For more information, please click here

Contacts:
Blaine Friedlander

607-254-8093

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Memory Technology

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Future computers could be built from magnetic 'tornadoes' October 14th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Sensors

Tiny carbon nanotube pores make big impact October 29th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Nanoelectronics

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Discoveries

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanoparticles Display Ability to Improve Efficiency of Filters October 28th, 2014

Materials/Metamaterials

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Polymeric Scaffold Recreates Bladder Tissue October 27th, 2014

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Announcements

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE