Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Intel, Micron First to Sample 3-Bit-Per-Cell NAND Flash Memory on Industry-Leading 25-Nanometer Silicon Process Technology

Abstract:
Intel Corporation and Micron Technology Inc. today announced the delivery of 3-bit-per-cell (3bpc) NAND flash memory on 25-nanometer (nm) process technology, producing the industry's highest capacity, smallest NAND device. The companies have sent initial product samples to select customers. Intel and Micron expect to be in full production by the end of the year.

Intel, Micron First to Sample 3-Bit-Per-Cell NAND Flash Memory on Industry-Leading 25-Nanometer Silicon Process Technology

Santa Clara, CA | Posted on August 18th, 2010

The new 64-gigabit (Gb) 3bpc on 25nm memory device offers improved cost efficiencies and higher storage capacity for the competitive USB, SD (Secure Digital) flash card and consumer electronics markets. Flash memory is primarily used to store data, photos and other multimedia for use in capturing and transferring data between computing and digital devices such as digital cameras, portable media players, digital camcorders and all types of personal computers. These markets are under constant pressure to provide higher capacities at low prices.

Designed by the IM Flash Technologies (IMFT) NAND flash joint venture, the 64-Gb, or 8 gigabyte (GB), 25nm lithography stores three bits of information per cell, rather than the traditional one bit (single-level cell) or two bits (multi-level cell). The industry also refers to 3bpc as triple-level cell (TLC.

The device is more than 20 percent smaller than the same capacity of Intel and Micron's 25nm MLC, which is currently the smallest single 8GB device in production today. Small form-factor flash memory is especially important for consumer end-product flash cards given their intrinsic compact design. The die measures 131mm2 and comes in an industry-standard TSOP package.

"With January's introduction of the industry's smallest die size at 25nm, quickly followed by the move to 3-bit-per-cell on 25nm, we continue to gain momentum and offer customers a compelling set of leadership products," said Tom Rampone, Intel vice president and general manager of Intel NAND Solutions Group. "Intel plans to use the design and manufacturing leadership of IMFT to deliver higher-density, cost-competitive products to our customers based on the new 8GB TLC 25nm NAND device."

"As the role of NAND memory continues to escalate in consumer electronics products, we see the early transition to TLC on 25nm as a competitive edge in our growing portfolio of NAND memory products," said Brian Shirley, vice president of Micron's NAND Solutions Group. "We are already working to qualify the 8GB TLC NAND flash device within end-product designs, including higher-capacity products from Lexar Media and Micron."

This press release contains forward-looking statements regarding the production of the 3bpc 64Gb NAND device. Actual events or results may differ materially from those contained in the forward-looking statements. Please refer to the documents Micron files on a consolidated basis from time to time with the Securities and Exchange Commission, specifically Micron's most recent Form 10-K and Form 10-Q. These documents contain and identify important factors that could cause the actual results for Micron on a consolidated basis to differ materially from those contained in our forward-looking statements (see Certain Factors). Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

####

About Intel
Intel (NASDAQ: INTC) is a world leader in computing innovation. The company designs and builds the essential technologies that serve as the foundation for the world’s computing devices.

For more information, please click here

Copyright © Intel

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Chip Technology

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Silicon Catalyst Announces Partnership With imec to Support Semiconductor Start-Ups February 23rd, 2015

Memory Technology

Insight into inner magnetic layers: Measurements at BESSY II have shown how spin filters forming within magnetic sandwiches influence tunnel magnetoresistance -- results that can help in designing spintronic component- February 17th, 2015

Dance of the nanovortices February 2nd, 2015

Nano - "Green" metal oxides ... January 13th, 2015

Quantum optical hard drive breakthrough January 8th, 2015

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Announcements

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE