Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers Control Collective Spin States Electrically at Room Temperature

This image is an artistic visualization of the atomic and magnetic moment structure of chromia. The presence of the permanent magnet in the center of the figure, with its magnetic stray-fields acting simultaneously with electric fields on chromia, captures the idea behind spintronics. Promising spintronic device concepts use an electrically controlled interface and surface magnetization. Surfaces of magnetoelectric materials such as chromia show roughness-insensitive, electrically switchable magnetization in the presence of a small symmetry breaking magnetic field opening up exciting prospects for spintronic applications. Credit: Christian Binek, Department of Physics and Astronomy, University of Nebraska-Lincoln
This image is an artistic visualization of the atomic and magnetic moment structure of chromia. The presence of the permanent magnet in the center of the figure, with its magnetic stray-fields acting simultaneously with electric fields on chromia, captures the idea behind spintronics. Promising spintronic device concepts use an electrically controlled interface and surface magnetization. Surfaces of magnetoelectric materials such as chromia show roughness-insensitive, electrically switchable magnetization in the presence of a small symmetry breaking magnetic field opening up exciting prospects for spintronic applications. Credit: Christian Binek, Department of Physics and Astronomy, University of Nebraska-Lincoln

Abstract:
Breakthrough paves way to store and process information in novel spin-electronics

Researchers Control Collective Spin States Electrically at Room Temperature

Arlington, VA | Posted on August 18th, 2010

Processing large amounts of information in today's electronics requires large amounts of power, which results in heating. Heat can ruin modern electronics by potentially damaging the stuff that makes them work--the ever smaller and denser structures in a computer's "brain," the microprocessor that incorporates all of its logic functions.

So, researchers have been investigating something called "spintronics," a field of research that uses the spin state of electrons to pave the way for a future generation of advanced, fast, low-power, heat-limiting devices that perform memory and logic functions beyond today's microprocessors. The challenge: controlling electron spins with low power at room temperature instead of temperatures approaching absolute zero (-273 degrees Celsius) so their resulting technologies can carry out tasks in normal-use environments.

Now, new lab work at the University of Nebraska Lincoln (UNL) Materials Science and Engineering Center (MRSEC) may have made a significant breakthrough in the field of spintronics. Physicists there, led by professor Christian Binek, for the first time changed the orientation of a very large number of electron spins collectively at room temperature by pure electrical means, a feat that eventually could make devices that use spintronics more readily available for everyday uses.

Their method could revolutionize information technology by reducing power consumption, providing faster processing speeds and improving device function as compared to today's electronics.

How Spintronics Works

Spintronics works by collectively and uniformly controlling electron spin to encode information, that is, to convert information into digital code. Because devices derived from spintronics rely on electron spin, more devices can fit on a single chip. The UNL researchers found a new approach to collectively and uniformly manipulate electron spin that relies solely on pure voltage. By doing so, they were able to process magnetically encoded information by electrical means instead of using current, silicon-based, transistor technologies.

"Because potential devices developed on the basis of spintronics produce little to no heat, higher integration becomes feasible, allowing for more devices on a single chip, leading to faster speeds and more computing power," said Binek, lead researcher and an associate professor of physics at UNL.

The general rapid progress of information technology has been hampered by energy consumption and temperature concerns, he said. But spintronics presents a potential solution by making it possible to put more electronic microprocessors on a single "chip" without high-temperature effects.

The Breakthrough

The UNL MRSEC's team of scientists demonstrated a method that uses voltage to control electron spins at room temperature by growing a material that is easily magnetized on top of another exotic material called chromia.

The easily magnetized material, also called a "ferromagnetic film," carried the magnetization researchers wanted to use to electrically control the collective electron spin state. But since ferromagnets do not directly respond to electric fields, chromia--which produces excess magnetization when exposed to an electric field--was used to help transfer the influence of the electric field on the ferromagnetic film.

The UNL researchers controlled the collective spin state by applying a voltage with zero current to the chromia. They also were able to reverse the direction of all the spins in the ferromagnetic film. By doing this, they showed they could control electron spins in two distinct states, which is necessary to encode a "bit" of information, the basic unit of information in computing.

Information stored this way can be accessed immediately and processed with little to zero electric power consumption and vastly reduced heat.

"We changed the magnetic orientation by purely electrical means," said Binek. "That is to say applying a voltage and nothing more complicated is required. This makes it easy to store a 'bit' of information, and the information is not lost when power is lost to the device."

Next the research team will attempt to achieve the same effect with the help of chromia thin films in order to integrate their findings into micro or nanoelectronic devices. Once this is accomplished, the researchers want to make sure the effect can be made stable far above room temperature.

"We want to realize the variety of spintronic applications we have conceptually thought about for years," said Binek.

UNL Physics professor Peter Dowben along with assistant Physics professor and theorist Kirill Belashchenko contributed to the research by providing advanced spectroscopy methodology and major theoretical insights. They were helped by UNL graduate students Xi He, Yi Wang and UNL postdoctoral researcher Ning Wu. Anthony Caruso from the University of Missouri-Kansas City and Elio Vescovo from Brookhaven National Laboratory also contributed important research to the project.

The journal Nature Materials published the findings online June 20; the research was funded by UNL's Materials Research Science and Engineering Center (MRSEC), which is supported by the National Science Foundation's Division of Materials Research.

Investigators
Christian Binek
Peter Dowben
Kirill Belashchenko
Anthony Caruso
Elio Vescovo

Related Institutions/Organizations
University of Nebraska-Lincoln
University of Missouri-Kansas City
Brookhaven National Laboratory

Locations
Nebraska
Missouri
New York

Related Awards
#0547887 CAREER: Education and Research on Nanoscale Spintronic Systems and Heterostructures
www.nsf.gov/awardsearch/showAward.do?AwardNumber=0547887

Total Grants
$500,000

Related Websites
Robust isothermal electric control of exchange bias at room temperature:

www.nature.com/nmat/journal/v9/n7/full/nmat2785.html

####

For more information, please click here

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Universality of charge order in cuprate superconductors: Charge order has been established in another class of cuprate superconductors, highlighting the importance of the phenomenon as a general property of these high-Tc materials December 22nd, 2014

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Spintronics

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Announcements

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Universality of charge order in cuprate superconductors: Charge order has been established in another class of cuprate superconductors, highlighting the importance of the phenomenon as a general property of these high-Tc materials December 22nd, 2014

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

“Line dancing bacteria win the 2014 Dolomite and Lab on a Chip Video Competition” December 16th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Research partnerships

Quantum physics just got less complicated December 22nd, 2014

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Unraveling the light of fireflies December 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE