Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers Control Collective Spin States Electrically at Room Temperature

This image is an artistic visualization of the atomic and magnetic moment structure of chromia. The presence of the permanent magnet in the center of the figure, with its magnetic stray-fields acting simultaneously with electric fields on chromia, captures the idea behind spintronics. Promising spintronic device concepts use an electrically controlled interface and surface magnetization. Surfaces of magnetoelectric materials such as chromia show roughness-insensitive, electrically switchable magnetization in the presence of a small symmetry breaking magnetic field opening up exciting prospects for spintronic applications. Credit: Christian Binek, Department of Physics and Astronomy, University of Nebraska-Lincoln
This image is an artistic visualization of the atomic and magnetic moment structure of chromia. The presence of the permanent magnet in the center of the figure, with its magnetic stray-fields acting simultaneously with electric fields on chromia, captures the idea behind spintronics. Promising spintronic device concepts use an electrically controlled interface and surface magnetization. Surfaces of magnetoelectric materials such as chromia show roughness-insensitive, electrically switchable magnetization in the presence of a small symmetry breaking magnetic field opening up exciting prospects for spintronic applications. Credit: Christian Binek, Department of Physics and Astronomy, University of Nebraska-Lincoln

Abstract:
Breakthrough paves way to store and process information in novel spin-electronics

Researchers Control Collective Spin States Electrically at Room Temperature

Arlington, VA | Posted on August 18th, 2010

Processing large amounts of information in today's electronics requires large amounts of power, which results in heating. Heat can ruin modern electronics by potentially damaging the stuff that makes them work--the ever smaller and denser structures in a computer's "brain," the microprocessor that incorporates all of its logic functions.

So, researchers have been investigating something called "spintronics," a field of research that uses the spin state of electrons to pave the way for a future generation of advanced, fast, low-power, heat-limiting devices that perform memory and logic functions beyond today's microprocessors. The challenge: controlling electron spins with low power at room temperature instead of temperatures approaching absolute zero (-273 degrees Celsius) so their resulting technologies can carry out tasks in normal-use environments.

Now, new lab work at the University of Nebraska Lincoln (UNL) Materials Science and Engineering Center (MRSEC) may have made a significant breakthrough in the field of spintronics. Physicists there, led by professor Christian Binek, for the first time changed the orientation of a very large number of electron spins collectively at room temperature by pure electrical means, a feat that eventually could make devices that use spintronics more readily available for everyday uses.

Their method could revolutionize information technology by reducing power consumption, providing faster processing speeds and improving device function as compared to today's electronics.

How Spintronics Works

Spintronics works by collectively and uniformly controlling electron spin to encode information, that is, to convert information into digital code. Because devices derived from spintronics rely on electron spin, more devices can fit on a single chip. The UNL researchers found a new approach to collectively and uniformly manipulate electron spin that relies solely on pure voltage. By doing so, they were able to process magnetically encoded information by electrical means instead of using current, silicon-based, transistor technologies.

"Because potential devices developed on the basis of spintronics produce little to no heat, higher integration becomes feasible, allowing for more devices on a single chip, leading to faster speeds and more computing power," said Binek, lead researcher and an associate professor of physics at UNL.

The general rapid progress of information technology has been hampered by energy consumption and temperature concerns, he said. But spintronics presents a potential solution by making it possible to put more electronic microprocessors on a single "chip" without high-temperature effects.

The Breakthrough

The UNL MRSEC's team of scientists demonstrated a method that uses voltage to control electron spins at room temperature by growing a material that is easily magnetized on top of another exotic material called chromia.

The easily magnetized material, also called a "ferromagnetic film," carried the magnetization researchers wanted to use to electrically control the collective electron spin state. But since ferromagnets do not directly respond to electric fields, chromia--which produces excess magnetization when exposed to an electric field--was used to help transfer the influence of the electric field on the ferromagnetic film.

The UNL researchers controlled the collective spin state by applying a voltage with zero current to the chromia. They also were able to reverse the direction of all the spins in the ferromagnetic film. By doing this, they showed they could control electron spins in two distinct states, which is necessary to encode a "bit" of information, the basic unit of information in computing.

Information stored this way can be accessed immediately and processed with little to zero electric power consumption and vastly reduced heat.

"We changed the magnetic orientation by purely electrical means," said Binek. "That is to say applying a voltage and nothing more complicated is required. This makes it easy to store a 'bit' of information, and the information is not lost when power is lost to the device."

Next the research team will attempt to achieve the same effect with the help of chromia thin films in order to integrate their findings into micro or nanoelectronic devices. Once this is accomplished, the researchers want to make sure the effect can be made stable far above room temperature.

"We want to realize the variety of spintronic applications we have conceptually thought about for years," said Binek.

UNL Physics professor Peter Dowben along with assistant Physics professor and theorist Kirill Belashchenko contributed to the research by providing advanced spectroscopy methodology and major theoretical insights. They were helped by UNL graduate students Xi He, Yi Wang and UNL postdoctoral researcher Ning Wu. Anthony Caruso from the University of Missouri-Kansas City and Elio Vescovo from Brookhaven National Laboratory also contributed important research to the project.

The journal Nature Materials published the findings online June 20; the research was funded by UNL's Materials Research Science and Engineering Center (MRSEC), which is supported by the National Science Foundation's Division of Materials Research.

Investigators
Christian Binek
Peter Dowben
Kirill Belashchenko
Anthony Caruso
Elio Vescovo

Related Institutions/Organizations
University of Nebraska-Lincoln
University of Missouri-Kansas City
Brookhaven National Laboratory

Locations
Nebraska
Missouri
New York

Related Awards
#0547887 CAREER: Education and Research on Nanoscale Spintronic Systems and Heterostructures
www.nsf.gov/awardsearch/showAward.do?AwardNumber=0547887

Total Grants
$500,000

Related Websites
Robust isothermal electric control of exchange bias at room temperature:

www.nature.com/nmat/journal/v9/n7/full/nmat2785.html

####

For more information, please click here

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Spintronics

New options for spintronic devices: Switching magnetism between 1 and 0 with low voltage near room temperature May 18th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Nanoelectronics

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

What makes cancer cells spread? New device offers clues May 19th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

International and U.S. Students and Teachers Headed to Toronto for 34th Annual International Space Development Conference®: Students competed in prestigious NSS-NASA Ames Space Settlement Design Contest May 9th, 2015

Pixelligent Technologies Announces $1M Phase-II OLED Lighting Award From the US Department of Energy May 9th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project