Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The Nano World of Shrinky Dinks

One programmable soft lithography recipe: (1) Start with a thermoplastic substrate. (2) Perform SANE. (3) Heat substrate. (4) Create different nanopatterns with same feature sizes. (5) Repeat.
One programmable soft lithography recipe: (1) Start with a thermoplastic substrate. (2) Perform SANE. (3) Heat substrate. (4) Create different nanopatterns with same feature sizes. (5) Repeat.

Abstract:
Low-cost nanopatterning method utilizes popular shrinkable plastic

The Nano World of Shrinky Dinks

Evanston, IL | Posted on August 16th, 2010

The magical world of Shrinky Dinks -- an arts and crafts material used by children since the 1970s -- has taken up residence in a Northwestern University laboratory. A team of nanoscientists is using the flexible plastic sheets as the backbone of a new inexpensive way to create, test and mass-produce large-area patterns on the nanoscale.

"Anyone needing access to large-area nanoscale patterns on the cheap could benefit from this method," said Teri W. Odom, associate professor of chemistry and Dow Chemical Company Research Professor in the Weinberg College of Arts and Sciences. Odom led the research. "It is a simple, low-cost and high-throughput nanopatterning method that can be done in any laboratory."

Details of the solvent-assisted nanoscale embossing (SANE) method are published by the journal Nano Letters. The work also will appear as the cover story of the journal's February 2011 issue.

The method offers unprecedented opportunities to manipulate the electronic, photonic and magnetic properties of nanomaterials. It also easily controls a pattern's size and symmetry and can be used to produce millions of copies of the pattern over a large area. Potential applications include devices that take advantage of nanoscale patterns, such as solar cells, high-density displays, computers and chemical and biological sensors.

"No other existing nanopatterning method can both prototype arbitrary patterns with small separations and reproduce them over six-inch wafers for less than $100," Odom said.

Starting with a single master pattern, the simple yet potentially transformative method can be used to create new nanoscale masters with variable spacings and feature sizes. SANE can increase the spacing of patterns up to 100 percent as well as decrease them down to 50 percent in a single step, merely by stretching or heating (shrinking) the polymer substrate (the Shrinky Dinks material). Also, SANE can reduce critical feature sizes as small as 45 percent compared to the master by controlled swelling of patterned polymer molds with different solvents. SANE works from the nanoscale to the macroscale.

Biologists, chemists and physicists who are not familiar with nanopatterning now can use SANE for research at the nanoscale. Those working on solar energy, data storage and plasmonics will find the method particularly useful, Odom said.

For example, in a plasmonics application, Odom and her research team used the patterning capabilities to generate metal nanoparticle arrays with continuously variable separations on the same substrate.

SANE offers a way to meet three grand challenges in nanofabrication from the same -- and a single -- master pattern: (1) creating programmable array densities, (2) reducing critical feature sizes, and (3) designing different and reconfigurable lattice symmetries over large areas and in a massively parallel manner.

The National Science Foundation supported the research.

The title of the Nano Letters paper is "Programmable Soft Lithography: Solvent-Assisted Nanoscale Embossing." In addition to Odom, other authors of the paper are Min Hyung Lee, Mark D. Huntington, Wei Zhou and Jiun-Chan Yang, all from Northwestern.

####

For more information, please click here

Contacts:
Megan Fellman is the science and engineering editor.
Contact her at

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Display technology/LEDs/SS Lighting/OLEDs

Nature: Low-reflection wings make butterflies nearly invisible: Irregular nanostructures on the transparent wing of the glasswing butterfly prevent the reflection of light -- publication in Nature Communications -- researchers plan applications April 23rd, 2015

Whiteboards of the future: New electronic paper could make inexpensive electronic displays: A simple structure of bi-colored balls made of tough, inexpensive materials is well suited for large handwriting-enabled e-paper displays April 21st, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Academic/Education

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

Sensors

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Nanoelectronics

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Photonics/Optics/Lasers

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Quantum 'paparazzi' film photons in the act of pairing up April 22nd, 2015

Solar/Photovoltaic

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Better battery imaging paves way for renewable energy future April 20th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project