Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Predicting how nanoparticles will react in the human body

Abstract:
Researchers at North Carolina State University have developed a method for predicting the ways nanoparticles will interact with biological systems, including the human body. Their work could have implications for improved human and environmental safety in the handling of nanomaterials, as well as applications for drug delivery.

Predicting how nanoparticles will react in the human body

Raleigh | Posted on August 15th, 2010

NC State researchers Dr. Jim Riviere, Burroughs Wellcome Distinguished Professor of Pharmacology and director of the university's Center for Chemical Toxicology Research and Pharmacokinetics, Dr. Nancy Monteiro-Riviere, professor of investigative dermatology and toxicology, and Dr. Xin-Rui Xia, research assistant professor of pharmacology, wanted to create a method for the biological characterization of nanoparticles - a screening tool that would allow other scientists to see how various nanoparticles might react when inside the body.

"We wanted to find a good, biologically relevant way to determine how nanomaterials react with cells," Riviere says. "When a nanomaterial enters the human body, it immediately binds to various proteins and amino acids. The molecules a particle binds with will determine where it will go."

This binding process also affects the particle's behavior inside the body. According to Monteiro-Riviere, the amino acids and proteins that coat a nanoparticle change its shape and surface properties, potentially enhancing or reducing characteristics like toxicity or, in medical applications, the particle's ability to deliver drugs to targeted cells.

To create their screening tool, the team utilized a series of chemicals to probe the surfaces of various nanoparticles, using techniques previously developed by Xia. A nanoparticle's size and surface characteristics determine the kinds of materials with which it will bond. Once the size and surface characteristics are known, the researchers can then create "fingerprints" that identify the ways that a particular particle will interact with biological molecules. These fingerprints allow them to predict how that nanoparticle might behave once inside the body.

The study results appear in the Aug. 23 online edition of Nature Nanotechnology.

"This information will allow us to predict where a particular nanomaterial will end up in the human body, and whether or not it will be taken up by certain cells," Riviere adds. "That in turn will give us a better idea of which nanoparticles may be useful for drug delivery, and which ones may be hazardous to humans or the environment."


The Center for Chemical Toxicology Research and Pharmacokinetics is part of NC State's College of Veterinary Medicine. The research was funded by the Environmental Protection Agency and the U.S. Air Force Office of Scientific Research.

Note to editors: An abstract of the paper follows

"An index for characterization of nanomaterials in biological systems"
Authors: Xin-Rui Xia, Nancy A. Monteiro-Riviere and Jim E. Riviere, NC State University
Published: Online in Aug. 15, 2010, Nature Nanotechnology

Abstract: In a physiological environment, nanoparticles selectively absorb proteins to form 'nanoparticle-protein coronas', a process governed by molecular interactions between chemical groups on the nanoparticle surfaces and the amino-acid residues of the proteins. Here, we propose a biological surface adsorption index to characterize these interactions by quantifying the competitive adsorption of a set of small molecule probes onto the nanoparticles. The adsorption properties of nanomaterials are assumed to be governed by Coulomb forces, London dispersion, hydrogen-bond acidity and basicity, polarizability and lone-pair electrons. Adsorption coefficients of the probe compounds were measured and used to create a set of nanodescriptors representing the contributions and relative strengths of each molecular interaction. The method successfully predicted the adsorption of various small molecules onto carbon nanotubes, and the nanodescriptors were also measured for 12 other nanomaterials. The biological surface adsorption index nanodescriptors can be used to develop pharmacokinetic and safety assessment models for nanomaterials.

####

For more information, please click here

Contacts:
Tracey Peake

919-515-6142

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

Preparing for Nano

Searching for a nanotech self-organizing principle May 1st, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Durnham University's DEEPEN project comes to a close September 26th, 2012

Technical Seminar at ANFoS 2012 August 22nd, 2012

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Nanomedicine

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Environment

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Researchers watch catalysts at work August 19th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

Personal Care/Cosmetics

Programmable materials find strength in molecular repetition May 23rd, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

New ORNL method could unleash solar power potential March 16th, 2016

Safety-Nanoparticles/Risk management

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Nanobiotechnology

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic