Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Electron orbits in multilayer graphene find energy gaps

Graphene Electron Motion
Graphene Electron Motion

Abstract:
Researchers have taken one more step toward understanding the unique and often unexpected properties of graphene, a two-dimensional carbon material that has attracted interest because of its potential applications in future generations of electronic devices.

By John Toon

Electron orbits in multilayer graphene find energy gaps

Atlanta, GA | Posted on August 10th, 2010

In the Aug. 8 advance online edition of the journal Nature Physics, researchers from the Georgia Institute of Technology and the National Institute of Standards and Technology (NIST) describe for the first time how the orbits of electrons are distributed spatially by magnetic fields applied to layers of epitaxial graphene.

The research team also found that these electron orbits can interact with the substrate on which the graphene is grown, creating energy gaps that affect how electron waves move through the multilayer material. These energy gaps could have implications for the designers of certain graphene-based electronic devices.

"The regular pattern of energy gaps in the graphene surface creates regions where electron transport is not allowed," said Phillip N. First, a professor in the Georgia Tech School of Physics and one of the paper's co-authors. "Electron waves would have to go around these regions, requiring new patterns of electron wave interference. Understanding such interference will be important for bi-layer graphene devices that have been proposed, and may be important for other lattice-matched substrates used to support graphene and graphene devices."

In a magnetic field, an electron moves in a circular trajectory -- known as a cyclotron orbit -- whose radius depends on the size of the magnetic field and the energy of electron. For a constant magnetic field, that's a little like rolling a marble around in a large bowl, First said.

"At high energy, the marble orbits high in the bowl, while for lower energies, the orbit size is smaller and lower in the bowl," he explained. "The cyclotron orbits in graphene also depend on the electron energy and the local electron potential -- corresponding to the bowl -- but until now, the orbits hadn't been imaged directly."

Placed in a magnetic field, these orbits normally drift along lines of nearly constant electric potential. But when a graphene sample has small fluctuations in the potential, these "drift states" can become trapped at a hill or valley in the material that has closed constant potential contours. Such trapping of charge carriers is important for the quantum Hall effect, in which precisely quantized resistance results from charge conduction solely through the orbits that skip along the edges of the material.

The study focused on one particular electron orbit: a zero-energy orbit that is unique to graphene. Because electrons are matter waves, interference within a material affects how their energy relates to the velocity of the wave -- and reflected waves added to an incoming wave can combine to produce a slower composite wave. Electrons moving through the unique "chicken-wire" arrangement of carbon-carbon bonds in the graphene interfere in a way that leaves the wave velocity the same for all energy levels.

In addition to finding that energy states follow contours of constant electric potential, the researchers discovered specific areas on the graphene surface where the orbital energy of the electrons changes from one atom to the next. That creates an energy gap within isolated patches on the surface.

"By examining their distribution over the surface for different magnetic fields, we determined that the energy gap is due to a subtle interaction with the substrate, which consists of multilayer graphene grown on a silicon carbide wafer," First explained.

In multilayer epitaxial graphene, each layer's symmetrical sublattice is rotated slightly with respect to the next. In prior studies, researchers found that the rotations served to decouple the electronic properties of each graphene layer.

"Our findings hold the first indications of a small position-dependent interaction between the layers," said David L. Miller, the paper's first author and a graduate student in First's laboratory. "This interaction occurs only when the size of a cyclotron orbit -- which shrinks as the magnetic field is increased -- becomes smaller than the size of the observed patches."

The origin of the position dependent interaction is believed to be the "moiré pattern" of atomic alignments between two adjacent layers of graphene. In some regions, atoms of one layer lie atop atoms of the layer below, while in other regions, none of the atoms align with the atoms in the layer below. In still other regions, half of the atoms have neighbors in the underlayer, an instance in which the symmetry of the carbon atoms is broken and the Landau level -- discrete energy level of the electrons -- splits into two different energies.

Experimentally, the researchers examined a sample of epitaxial graphene grown at Georgia Tech in the laboratory of Professor Walt de Heer, using techniques developed by his research team over the past several years.

They used the tip of a custom-built scanning-tunneling microscope (STM) to probe the atomic-scale electronic structure of the graphene in a technique known as scanning tunneling spectroscopy. The tip was moved across the surface of a 100-square nanometer section of graphene, and spectroscopic data was acquired every 0.4 nanometers.

The measurements were done at 4.3 degrees Kelvin to take advantage of the fact that energy resolution is proportional to the temperature. The scanning-tunneling microscope, designed and built by Joseph Stroscio at NIST's Center for Nanoscale Science and Technology, used a superconducting magnet to provide the magnetic fields needed to study the orbits.

According to First, the study raises a number of questions for future research, including how the energy gaps will affect electron transport properties, how the observed effects may impact proposed bi-layer graphene coherent devices -- and whether the new phenomenon can be controlled.

"This study is really a stepping stone in long path to understanding the subtleties of graphene's interesting properties," he said. "This material is different from anything we have worked with before in electronics."

In addition to those already mentioned, the study also included Walt de Heer, Kevin D. Kubista, Ming Ruan, and Markus Kinderman from Georgia Tech and Gregory M. Rutter from NIST. The research was supported by the National Science Foundation, the Semiconductor Research Corporation and the W.M. Keck Foundation. Additional assistance was provided by Georgia Tech's Materials Research Science and Engineering Center (MRSEC).

####

For more information, please click here

Contacts:
Media Relations Contacts:
John Toon
404-894-6986


Abby Vogel Robinson
404-385-3364

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Academic/Education

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

JPK reports on the use of a NanoWizard® AFM-SECM system at the Université Paris Diderot looking at nanoscale biostructures August 18th, 2015

Rice, Penn State open center for 2-D coatings: National Science Foundation selects universities to develop atom-thin materials with industry partners August 13th, 2015

Nanotubes/Buckyballs/Fullerenes

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Revolutionary MIT-Developed Nanotechnology Company Showcases at CAMX in Dallas August 20th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Nanoelectronics

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

Better together: Graphene-nanotube hybrid switches August 3rd, 2015

Announcements

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Tools

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic