Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Push-Button Logic on the Nanoscale

Abstract:
Circuits that can perform logic operations at the push of a button are a dime-a-dozen these days, but a breakthrough by researchers in the USA has meant they can be smaller and simpler than ever before.

Push-Button Logic on the Nanoscale

Atlanta, GA | Posted on August 5th, 2010

Using a single material as both the button and the circuit for the first time, scientists at the Georgia Institute of Technology have created tiny logic circuits that can be used as the basis of nanometer-scale robotics and processors.

Professor Zhong Lin (ZL) Wang, who leads the research, explains how the peculiar properties of zinc oxide have made this work possible. "Zinc oxide is unique because of its coupled piezoelectric and semiconductor properties." The piezoelectric effect occurs when a strain on a material, caused by pushing on it for example, reversibly changes the crystal structure in one direction enough to make an electric field. The mechanical motion induces a voltage from one side of the material to the other. Semiconductors have the ability to conduct electricity, or not, depending on some external factor. In zinc oxide, these two characteristics combine and the transport of electric current is influenced by the piezoelectric effect, meaning that changes in strain result in changes in the material's ability to conduct electricity. This is what is known as the piezotronic effect.

By having the zinc oxide in the form of a nanowire, (diameter 300 nanometers; length 400 micrometers), and bonded with metals at each end, Wang has effectively produced a tiny transistor, which is gated (open or shut, with electricity either flowing or not) by the strain applied to the nanowire.

In results published in Advanced Materials this week, Wang and his colleagues show how by combining an appropriate number of these transistors in various arrangements, systems can be made that can process the basic logic functions of NAND, NOR, and XOR, as well as act as multiplexers (MUX) and demultiplexors (DEMUX).

Until now, logic processors have relied on the use of CMOS technology, using two Complementary components, a Metal Oxide and a Semiconductor, such as silicon. In CMOS processors, an electric signal is required to operate the gate. If a mechanical stimulus is required, yet a further component must be added to the system. By contrast, Wang claims his work represents a "brand new approach toward logic operation that performs mechanic-electrical coupled and controlled actions in one structure unit using a single material (which is zinc oxide)…This is the very first demonstration of mechanical action-induced electronic operation with the introduction of a new driving mechanism in comparison to existing silicon-based logic operations. This is also the first demonstration of its kind using nanowires."

Working in the nanoscale presents its own challenges, and the most difficult parts of this work were synthesizing high-quality nanowires and manipulating them on the substrate so they would work in a synchronized way. But Wang is now confident they have achieved a good control over the process, and the results testify that this is the case.

The logic circuits are not as fast as those currently in use and based on CMOS, but Wang does not see this as a problem. In fact, he sees the applications of the two technologies as being complementary. "The strain-gated logic devices are designed to interface with the ambient environment, which is associated with low-frequency mechanical actions, and the aim and targeting applications are different from those of conventional silicon devices which aim at speed." Envisaged applications include nanorobotics, transducers, micromachines, human-computer interfacing, and microfluidics (where tiny channels carry various liquids, usually to be mixed for reaction tightly controlled ways).

The group intends to join the new strain-gated transducers to sensors and energy-drawing components they have previously prepared also from zinc oxide nanowires to make "self-sustainable, all-nanowire-based, multifunctional self-powered autonomous intelligent nanoscale systems." It seems we won't even need to push a button anymore.

Prof. Wang is a member of the Advisory Board of Advanced Functional Materials, published by Wiley-Blackwell, who also publish Advanced Materials.

W. Z. Wu, Y. G. Wei, and Z. L. Wang, "Strain-Gated Piezotronic Logic Nanodevices", Advanced Materials 2010, DOI: 10.1002/adma.201001925

This paper is available online on doi.wiley.com/10.1002/adma.201001925

####

For more information, please click here

Contacts:
Prof. Zhong Lin Wang
School of Materials Science and Engineering
Georgia Institute of Technology
Atlanta, GA 30332 (USA)
www.nanoscience.gatech.edu/zlwang

Copyright © Materials Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Possible Futures

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Chip Technology

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Nanoelectronics

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Supersonic spray yields new nanomaterial for bendable, wearable electronics: Film of self-fused nanowires clear as glass, conducts like metal November 23rd, 2016

Discoveries

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Announcements

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project