Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum fractals at the border of magnetism

Abstract:
Study of quantum phase changes reveals surprising relationship between magnetism and electricity

Quantum fractals at the border of magnetism

Houston, TX | Posted on July 29th, 2010

U.S., German and Austrian physicists studying the perplexing class of materials that includes high-temperature superconductors are reporting this week the unexpected discovery of a simple "scaling" behavior in the electronic excitations measured in a related material. The experiments, which were conducted on magnetic heavy-fermion metals, offer direct evidence of the large-scale electronic consequences of "quantum critical" effects.

The experimental and theoretical results are reported this week in the Proceedings of the National Academy of Science by physicists at Rice University in Houston; the Max Planck Institute for Chemical Physics of Solids and the Max Planck Institute for the Physics of Complex Systems, both in Dresden, Germany; and the Vienna University of Technology in Austria.

"High-temperature superconductivity has been referred to as the biggest unsolved puzzle in modern physics, and these results provide further support to the idea that correlated electron effects -- including high-temperature superconductivity -- arise out of quantum critical points," said Rice physicist Qimiao Si, the group's lead theorist.

"Our experiments clearly show that variables from classical physics cannot explain all of the observed macroscopic properties of materials at quantum critical points," said lead experimentalist Frank Steglich, director of the Max Planck Institute for Chemical Physics of Solids.

The experiments by Steglich's group were conducted on a heavy-fermion metal containing ytterbium, rhodium and silicon that is known as YbRh2Si2 (YRS). YRS is one of the best-characterized and most-studied quantum critical materials.

Quantum criticality refers to a phase transition, or tipping point, that marks an abrupt change in the physical properties of a material. The most common example of an everyday phase change would be the melting of ice, which marks the change of water from a solid to a liquid phase. The term "quantum critical matter" refers to any material that undergoes a phase transition due solely to the jittering of subatomic particles as described by Heisenberg's uncertainty principle. Heavy-fermion metals like YRS are one such material class, and considerable evidence exists that high-temperature superconductors are another.

Scientists are keen to better understand high-temperature superconductivity because the technology could revolutionize electric generators, MRI scanners, high-speed trains and other devices.

High temperature superconductivity typically arises at the border of magnetism, and some physicists believe it originates in the fluctuations associated with magnetic quantum criticality. In magnetic systems such as YRS, traditional theories attempt to explain quantum criticality by considering magnetism alone. In this view, electrons - the carriers of electricity - are considered as microscopic details that play no role in quantum criticality.

In 2001, Si and colleagues proposed a new theory based upon a new type of quantum critical point. Their "local quantum criticality" incorporates both magnetism and charged electronic excitations. A key prediction of the theory is that Fermi volume collapses at a quantum critical point.

"Fermi volume" refers to the combined momenta, or wavelengths, of all the electrons in a crystalline solid. It exists because electrons -- part of the family of elementary particles called "fermions" - must occupy different quantum mechanical states.

The newly reported results about YRS are the culmination of more than seven years' worth of research by Si, Steglich and colleagues. In 2004, they reported the first evidence for the collapse of a Fermi volume in a quantum critical matter, and three years later they reported the first telltale signs of a link between the Fermi-volume collapse and thermodynamic properties in YRS.

In YRS, the transition from one quantum phase to another -- the tipping point -- is marked by a flip between magnetic and nonmagnetic states. By cooling YRS to a set temperature near absolute zero, and adjusting the magnetic field applied to the supercooled YRS, Steglich's team can mark the points along the magnetic continuum that mark both the onset and the end of the Fermi-volume collapse.

In the current study, this method was applied systematically, over a broad range of temperature and magnetic-field settings. To rule out the possibility that irregularities in a particular sample were influencing the results, Steglich's team studied two samples of different qualities and applied an identical set of tests to each. For each sample, the researchers measured the "crossover width," the distance between the beginning and ending points of the Fermi-volume change. The extensive experiments established that the Fermi-volume change is robust, or happens roughly the same way even in different types of samples. The experiments also revealed something entirely new.

"After hundreds of experiments, we plotted the crossover width as a function of temperature, and the plot formed a straight line that ran through the origin," Steglich said. "The effect was the same, regardless of differences between samples, so it is clearly not an artifact of the sample preparation."

"The linear dependence of the Fermi-volume crossover width on the temperature reveals particular quantum-critical scaling properties regarding the electronic excitations," said Si, Rice's Harry C. and Olga K. Wiess Professor of Physics and Astronomy. "It is striking that the electronic scaling is so robust at a magnetic quantum critical point."

Scaling refers to the fact that the mathematics that describes the electronic relationship is similar to the math that describes fractals; the relationships it describes are the same, regardless of whether the scale is large or small. Si said scaling at a quantum critical point is also "dynamical," which means it occurs not only as a function of length scales but also in terms of time scales.

"The experiments provide, for the first time, the evidence for a salient property of local quantum criticality, namely the driving force for dynamical scaling is the Fermi-volume collapse, even though the quantum transition is magnetic," said co-author Silke Paschen, professor and head of the Institute of Solid State Physics at the Vienna University of Technology.

Additional co-authors include Sven Friedmann, Niels Oeschler, Steffen Wirth, Cornelius Krellner and Christoph Geibel, all of the Max Planck Institute for Chemical Physics of Solids, and Stefan Kirchner, a former postdoctoral fellow at Rice University who is now at the Max Planck Institute for the Physics of Complex Systems. The research was supported by the German Research Foundation, the European Research Council, the National Science Foundation and the Welch Foundation.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
Jade Boyd
Associate Director and Science Editor
Office of Public Affairs/News & Media Relations
Rice University
(office) 713-348-6778
(cell) 713-302-2447

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Physics

Graphene under pressure August 26th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Possible Futures

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Materials/Metamaterials

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Research partnerships

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Quantum nanoscience

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

Prototype chip could help make quantum computing practical: Built-in optics could enable chips that use trapped ions as quantum bits August 9th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Scientists discover light could exist in a previously unknown form August 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic