Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Quantum fractals at the border of magnetism

Abstract:
Study of quantum phase changes reveals surprising relationship between magnetism and electricity

Quantum fractals at the border of magnetism

Houston, TX | Posted on July 29th, 2010

U.S., German and Austrian physicists studying the perplexing class of materials that includes high-temperature superconductors are reporting this week the unexpected discovery of a simple "scaling" behavior in the electronic excitations measured in a related material. The experiments, which were conducted on magnetic heavy-fermion metals, offer direct evidence of the large-scale electronic consequences of "quantum critical" effects.

The experimental and theoretical results are reported this week in the Proceedings of the National Academy of Science by physicists at Rice University in Houston; the Max Planck Institute for Chemical Physics of Solids and the Max Planck Institute for the Physics of Complex Systems, both in Dresden, Germany; and the Vienna University of Technology in Austria.

"High-temperature superconductivity has been referred to as the biggest unsolved puzzle in modern physics, and these results provide further support to the idea that correlated electron effects -- including high-temperature superconductivity -- arise out of quantum critical points," said Rice physicist Qimiao Si, the group's lead theorist.

"Our experiments clearly show that variables from classical physics cannot explain all of the observed macroscopic properties of materials at quantum critical points," said lead experimentalist Frank Steglich, director of the Max Planck Institute for Chemical Physics of Solids.

The experiments by Steglich's group were conducted on a heavy-fermion metal containing ytterbium, rhodium and silicon that is known as YbRh2Si2 (YRS). YRS is one of the best-characterized and most-studied quantum critical materials.

Quantum criticality refers to a phase transition, or tipping point, that marks an abrupt change in the physical properties of a material. The most common example of an everyday phase change would be the melting of ice, which marks the change of water from a solid to a liquid phase. The term "quantum critical matter" refers to any material that undergoes a phase transition due solely to the jittering of subatomic particles as described by Heisenberg's uncertainty principle. Heavy-fermion metals like YRS are one such material class, and considerable evidence exists that high-temperature superconductors are another.

Scientists are keen to better understand high-temperature superconductivity because the technology could revolutionize electric generators, MRI scanners, high-speed trains and other devices.

High temperature superconductivity typically arises at the border of magnetism, and some physicists believe it originates in the fluctuations associated with magnetic quantum criticality. In magnetic systems such as YRS, traditional theories attempt to explain quantum criticality by considering magnetism alone. In this view, electrons - the carriers of electricity - are considered as microscopic details that play no role in quantum criticality.

In 2001, Si and colleagues proposed a new theory based upon a new type of quantum critical point. Their "local quantum criticality" incorporates both magnetism and charged electronic excitations. A key prediction of the theory is that Fermi volume collapses at a quantum critical point.

"Fermi volume" refers to the combined momenta, or wavelengths, of all the electrons in a crystalline solid. It exists because electrons -- part of the family of elementary particles called "fermions" - must occupy different quantum mechanical states.

The newly reported results about YRS are the culmination of more than seven years' worth of research by Si, Steglich and colleagues. In 2004, they reported the first evidence for the collapse of a Fermi volume in a quantum critical matter, and three years later they reported the first telltale signs of a link between the Fermi-volume collapse and thermodynamic properties in YRS.

In YRS, the transition from one quantum phase to another -- the tipping point -- is marked by a flip between magnetic and nonmagnetic states. By cooling YRS to a set temperature near absolute zero, and adjusting the magnetic field applied to the supercooled YRS, Steglich's team can mark the points along the magnetic continuum that mark both the onset and the end of the Fermi-volume collapse.

In the current study, this method was applied systematically, over a broad range of temperature and magnetic-field settings. To rule out the possibility that irregularities in a particular sample were influencing the results, Steglich's team studied two samples of different qualities and applied an identical set of tests to each. For each sample, the researchers measured the "crossover width," the distance between the beginning and ending points of the Fermi-volume change. The extensive experiments established that the Fermi-volume change is robust, or happens roughly the same way even in different types of samples. The experiments also revealed something entirely new.

"After hundreds of experiments, we plotted the crossover width as a function of temperature, and the plot formed a straight line that ran through the origin," Steglich said. "The effect was the same, regardless of differences between samples, so it is clearly not an artifact of the sample preparation."

"The linear dependence of the Fermi-volume crossover width on the temperature reveals particular quantum-critical scaling properties regarding the electronic excitations," said Si, Rice's Harry C. and Olga K. Wiess Professor of Physics and Astronomy. "It is striking that the electronic scaling is so robust at a magnetic quantum critical point."

Scaling refers to the fact that the mathematics that describes the electronic relationship is similar to the math that describes fractals; the relationships it describes are the same, regardless of whether the scale is large or small. Si said scaling at a quantum critical point is also "dynamical," which means it occurs not only as a function of length scales but also in terms of time scales.

"The experiments provide, for the first time, the evidence for a salient property of local quantum criticality, namely the driving force for dynamical scaling is the Fermi-volume collapse, even though the quantum transition is magnetic," said co-author Silke Paschen, professor and head of the Institute of Solid State Physics at the Vienna University of Technology.

Additional co-authors include Sven Friedmann, Niels Oeschler, Steffen Wirth, Cornelius Krellner and Christoph Geibel, all of the Max Planck Institute for Chemical Physics of Solids, and Stefan Kirchner, a former postdoctoral fellow at Rice University who is now at the Max Planck Institute for the Physics of Complex Systems. The research was supported by the German Research Foundation, the European Research Council, the National Science Foundation and the Welch Foundation.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
Jade Boyd
Associate Director and Science Editor
Office of Public Affairs/News & Media Relations
Rice University
(office) 713-348-6778
(cell) 713-302-2447

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Physics

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

Unusual Electronic State Found in New Class of Unconventional Superconductors: Finding gives scientists a new group of materials to explore to unlock secrets of some materials' ability to carry current with no energy loss December 8th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Materials/Metamaterials

Aculon Hires New Business Development Director December 19th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Research partnerships

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Unraveling the light of fireflies December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Quantum nanoscience

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE