Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Intel Innovator, PSU Chemistry Ph.D., Finds Green Solution Focused on Planet, Profit

Abstract:
Nabil Mistkawi, a new Portland State University (PSU) chemistry graduate and full-time Intel employee, has invented a one-of-a-kind chemical formulation that enables sub-50 nanometer (nm) process technology for advanced microprocessors manufacturing. This novel and environmentally friendly chemical formulation saves Intel tens of millions of dollars annually.

Intel Innovator, PSU Chemistry Ph.D., Finds Green Solution Focused on Planet, Profit

Portland, OR | Posted on July 29th, 2010

These microprocessors serve as the "brains," or central processing units (CPUs), of today's personal computers. Microprocessors are often comprised of more than ten layers and many different materials. To successfully manufacture sub-50nm semiconductor chips, certain materials must be uniformly removed. To do this, Nabil Mistkawi implemented an elegant solution low in toxicity and high in performance.

His solution was a green chemistry concoction that would selectively dissolve certain metal, while preserving the integrity of electrical wiring components such as copper, and of insulators, that are all sandwiched together on the chip. This wet etching process is much cleaner and significantly more effective for this application than the typical chemical polishing approach to remove materials. The new process is not only effective, but also fast—completed in only two minutes.

For Intel Corporation, this "wet etching" method has served as a great, green leap forward. It was first implemented in 2006, scaled up in 2007, and has been part of the manufacturing process for current generations of Intel microprocessors. This work replaced toxic chemical formulations containing solvents that were harmful to human health as well as the environment, thus requiring strict and controlled usage protocols.

For Mistkawi, a process engineer at Intel's Hillsboro, Ore., facility, it served as the basis for his doctoral dissertation, "Fundamental Studies in Selective Wet Etching and Corrosion Processes for High Performance Semiconductor Devices," six years in the making and successfully defended this winter at Portland State University.

"I like to have students work on projects that actually amount to something tangible," says Shankar Rananavare, faculty adviser to Mistkawi and research associate professor of chemistry at PSU. "It's one thing to make it work in a test tube and beaker. It's quite another to do so at 8,000 gallons each week."

Addressing the environmental and human risks was the driving force to solve the etch selectivity challenge. This challenging task was proposed to a number of outside chemical companies and academic research labs. After one year of research they claimed that it is impossible to achieve the etch selectivity requirements. Three days after Mistkawi was asked to take a look at the problem, he had demonstrated both feasibility and proof of a concept that would prove to be cheaper, faster and cleaner.

Another fortunate byproduct of this process is actually its lack of byproduct. The chemical etching solution is 98 percent water, with fluoride content less than that of toothpaste. This "green chemistry" reduces both disposal and environmental costs. "It was nice to incorporate a green chemistry approach, but ultimately the process had to be robust enough through its performance," says Mistkawi.

The technology had been proven, but fully understanding and demonstrating the science remained important. Mistkawi continued to refine and replicate his work in labs at Intel, located in Hillsboro, Ore. At Portland State he worked to understand the science behind the process, meeting weekly with his adviser and other doctoral students (who agreed to meet on Friday evenings to accommodate Mistkawi's work schedule). Mistkawi also worked closely with the U.S. Department of Energy's National Energy Technology Laboratory in Albany, Ore., (www.netl.doe.gov) to better understand corrosion science of metal thin films.

"As good as the technology was, we wanted to make sure the science behind the process was equally well understood," says PSU's Rananavare.

Nabil Mistkawi received his doctorate at Portland State University commencement ceremonies in June 2010—one of the first ten students to complete this relatively new program. He continues to work full-time for Intel, where he is an inventor on nine patent applications filed since 2003, and is considering joining the component research team, focused on path-finding research challenges. He has received numerous awards, including the 2006 Global Intel Gold Award, given annually to an Intel employee who is engaged in a project that demonstrates exceptional environmental leadership.

Mistkawi earned a double major in biochemistry and chemistry at University of Oregon. He lives with his wife and three children in Keizer, Ore.

Portland State University has long-standing connections with regional industry—PSU already provides more graduates to Intel Oregon than any other university. These connections, with an emphasis on addressing industry challenges, benefit business, while helping expand and refine curriculum. Mistkawi's work in wet etching has already contributed to future coursework for other graduate science and engineering students at PSU.

"This story is a great example of how faculty at Portland State University partner at both an educational and research level with local industry" say Kevin Reynolds, professor and chair of PSU's Department of Chemistry. "It is one of the great strengths of our institution and as this example shows, the results can have a global impact with both positive economic and environmental outcomes."

####

About Portland State University
Portland State University (PSU) serves as a center of opportunity for over 28,000 undergraduate and graduate students. Located in Portland, Oregon, one of the nation’s most livable cities, the University’s innovative approach to education combines academic rigor in the classroom with field-based experiences through internships and classroom projects with community partners. The University’s 49-acre downtown campus provides a living laboratory for Portland State’s commitment to sustainability, with many of the 125 bachelor’s, master’s and doctoral degrees incorporating sustainability into the curriculum. PSU’s motto, “Let Knowledge Serve the City,” inspires the teaching and research of an accomplished faculty whose work and students span the globe.

About Intel
Intel (NASDAQ: INTC), the world leader in silicon innovation, develops technologies, products and initiatives to continually advance how people work and live. Additional information about Intel is available at www.intel.com/pressroom and blogs.intel.com. Intel, Intel Xeon, Core and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

* Other names and brands may be claimed as the property of others.

For more information, please click here

Contacts:
David Santen
Office of University Communications
Portland State University
503-725-8765

Copyright © Portland State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Chemistry

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Pokhara, the second largest city of Nepal, to host its first ever International Meeting on Material Sciences and Engineering August 15th, 2016

'Liquid fingerprinting' technique instantly identifies unknown liquids: Ability to instantly identify unknown liquids in the field could aid first responders, improve plant safety August 4th, 2016

Possible Futures

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Chip Technology

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic