Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers Use Nanoparticles as Destructive Beacons to Zap Tumors

Abstract:
A group of researchers from Wake Forest University Baptist Medical Center (WFUBMC) is developing a way to treat cancer by using lasers to light up tiny nanoparticles and destroy tumors with the ensuing heat.

Researchers Use Nanoparticles as Destructive Beacons to Zap Tumors

Winston-Salem, NC | Posted on July 26th, 2010

Today at the 52nd Annual Meeting of the American Association of Physicists in Medicine (AAPM) in Philadelphia, they will describe the latest development for this technology: iron-containing Multi-Walled Carbon Nanotubes (MWCNTs) -- threads of hollow carbon that are 10 thousand times thinner than a human hair.

In laboratory experiments, the team showed that by using an MRI scanner, they could image these particles in living tissue, watch as they approached a tumor, zap them with a laser, and destroy the tumor in the process.

If this sounds like science fiction, it is not. The work builds on an experimental technique for treating cancer called laser-induced thermal therapy (LITT), which uses energy from lasers to heat and destroy tumors. LITT works by virtue of the fact that certain nanoparticles like MWCNTs can absorb the energy of a laser and then convert it into heat. If the nanoparticles are zapped while within a tumor, they will boil off the energy as heat and kill the cancerous cells.

The problem with LITT, however, is that while a tumor may be clearly visible in a medical scan, the particles are not. They cannot be tracked once injected, which could put a patient in danger if the nanoparticles were zapped away from the tumor because the aberrant heating could destroy healthy tissue.

Now the team from Wake Forest Baptist has shown for the first time that it is possible to make the particles visible in the MRI scanner to allow imaging and heating at the same time. By loading the MWCNT particles with iron, they become visible in an MRI scanner. Using tissue containing mouse tumors, they showed that these iron-containing MWCNT particles could destroy the tumors when hit with a laser.

"To find the exact location of the nanoparticle in the human body is very important to the treatment," says Xuanfeng Ding, M.S., who is presenting the work today in Philadelphia. "It is really exciting to watch the tumor labeled with the nanotubes begin to shrink after the treatment."

The results are part of Ding's ongoing Ph.D. thesis work -- a multi-disciplinary project led by Suzy Torti, Ph.D., professor of biochemistry at Wake Forest Baptist, and David Carroll, Ph.D., director of the Wake Forest University Center for Nanotechnology and Molecular Materials, that also includes the WFUBMC Departments of Physics, Radiation Oncology, Cancer Biology, and Biochemistry.

A previous study by the same group showed that laser-induced thermal therapy using a closely-related nanoparticle actually increased the long-term survival of mice with tumors. The next step in this project is to see if the iron-loaded nanoparticles can do the same thing.

If the work proves successful, it may one day help people with cancer, though the technology would have to prove safe and effective in clinical trials.

Dan Bourland, Ph.D., associate professor of radiation oncology and Ding's advisor, praises the high quality of Ding's work and says that the project is a strong example of today's "team science" that is needed for success in the biomedical fields.

####

For more information, please click here

Contacts:
Jessica Guenzel

336-716-3487

Bonnie Davis

336-716-4977

Copyright © Wake Forest University Baptist Medical Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Nanobiotechnology

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

Photonics/Optics/Lasers

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE