Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers Use Nanoparticles as Destructive Beacons to Zap Tumors

Abstract:
A group of researchers from Wake Forest University Baptist Medical Center (WFUBMC) is developing a way to treat cancer by using lasers to light up tiny nanoparticles and destroy tumors with the ensuing heat.

Researchers Use Nanoparticles as Destructive Beacons to Zap Tumors

Winston-Salem, NC | Posted on July 26th, 2010

Today at the 52nd Annual Meeting of the American Association of Physicists in Medicine (AAPM) in Philadelphia, they will describe the latest development for this technology: iron-containing Multi-Walled Carbon Nanotubes (MWCNTs) -- threads of hollow carbon that are 10 thousand times thinner than a human hair.

In laboratory experiments, the team showed that by using an MRI scanner, they could image these particles in living tissue, watch as they approached a tumor, zap them with a laser, and destroy the tumor in the process.

If this sounds like science fiction, it is not. The work builds on an experimental technique for treating cancer called laser-induced thermal therapy (LITT), which uses energy from lasers to heat and destroy tumors. LITT works by virtue of the fact that certain nanoparticles like MWCNTs can absorb the energy of a laser and then convert it into heat. If the nanoparticles are zapped while within a tumor, they will boil off the energy as heat and kill the cancerous cells.

The problem with LITT, however, is that while a tumor may be clearly visible in a medical scan, the particles are not. They cannot be tracked once injected, which could put a patient in danger if the nanoparticles were zapped away from the tumor because the aberrant heating could destroy healthy tissue.

Now the team from Wake Forest Baptist has shown for the first time that it is possible to make the particles visible in the MRI scanner to allow imaging and heating at the same time. By loading the MWCNT particles with iron, they become visible in an MRI scanner. Using tissue containing mouse tumors, they showed that these iron-containing MWCNT particles could destroy the tumors when hit with a laser.

"To find the exact location of the nanoparticle in the human body is very important to the treatment," says Xuanfeng Ding, M.S., who is presenting the work today in Philadelphia. "It is really exciting to watch the tumor labeled with the nanotubes begin to shrink after the treatment."

The results are part of Ding's ongoing Ph.D. thesis work -- a multi-disciplinary project led by Suzy Torti, Ph.D., professor of biochemistry at Wake Forest Baptist, and David Carroll, Ph.D., director of the Wake Forest University Center for Nanotechnology and Molecular Materials, that also includes the WFUBMC Departments of Physics, Radiation Oncology, Cancer Biology, and Biochemistry.

A previous study by the same group showed that laser-induced thermal therapy using a closely-related nanoparticle actually increased the long-term survival of mice with tumors. The next step in this project is to see if the iron-loaded nanoparticles can do the same thing.

If the work proves successful, it may one day help people with cancer, though the technology would have to prove safe and effective in clinical trials.

Dan Bourland, Ph.D., associate professor of radiation oncology and Ding's advisor, praises the high quality of Ding's work and says that the project is a strong example of today's "team science" that is needed for success in the biomedical fields.

####

For more information, please click here

Contacts:
Jessica Guenzel

336-716-3487

Bonnie Davis

336-716-4977

Copyright © Wake Forest University Baptist Medical Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Possible Futures

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Academic/Education

Luleĺ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Nanotubes go with the flow to penetrate brain tissue: Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation December 19th, 2017

Nanomedicine

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Announcements

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Nanobiotechnology

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Photonics/Optics/Lasers

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Ocean Optics Grows Sales Organization with Executive Appointments: Henry Langston promoted, Christine Stannard joins spectral sensing product developer December 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project