Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Correcting a trick of the light brings molecules into view

Graph on left shows that with the active feedback system off there is a resolution drift of about 0.3 pixels or 19 nanometers, but with the feedback system on resolution is maintained at better than 0.01 pixels, or about 0.64 nanometers. Image on right shows individual Cyanine (Cy) fluorescent dye molecules – Cy3 and Cy5 - used to label 20 base pairs of double-stranded DNA.
Graph on left shows that with the active feedback system off there is a resolution drift of about 0.3 pixels or 19 nanometers, but with the feedback system on resolution is maintained at better than 0.01 pixels, or about 0.64 nanometers. Image on right shows individual Cyanine (Cy) fluorescent dye molecules – Cy3 and Cy5 - used to label 20 base pairs of double-stranded DNA.

Abstract:
Conventional wisdom holds that optical microscopy can't be used to "see" something as small as an individual molecule. But science has once again overturned conventional wisdom. Secretary of Energy, Nobel laureate and former director of the Lawrence Berkeley National Laboratory (Berkeley Lab) Steven Chu led the development of a technique that enables the use of optical microscopy to image objects or the distance between them with resolutions as small as 0.5 nanometers - one-half of one billionth of a meter, or an order of magnitude smaller than the previous best.

Correcting a trick of the light brings molecules into view

Berkeley, CA | Posted on July 16th, 2010

"The ability to get sub-nanometer resolution in biologically relevant aqueous environments has the potential to revolutionize biology, particularly structural biology," says Secretary Chu. "One of the motivations for this work, for example, was to measure distances between proteins that form multi-domain, highly complex structures, such as the protein assembly that forms the human RNA polymerase II system, which initiates DNA transcription."

Secretary Chu is the co-author of a paper now appearing in the journal Nature that describes this research. The paper is titled "Subnanometre single-molecule localization, registration and distance measurements." The other authors are Alexandros Pertsinidis, a post-doctoral researcher and member of Chu's research group at the University of California (UC) Berkeley, who is now an assistant professor at the Sloan-Kettering Institute, and Yunxiang Zhang, a member of Chu's research group at Stanford University.

According to a law of physics known as the "diffraction limit," the smallest image that an optical system can resolve is about half the wavelength of the light used to produce that image. For conventional optics, this corresponds to about 200 nanometers. By comparison, a DNA molecule measures about 2.5 nanometers in width.

While non-optical imaging systems, such as electron microscopes, can resolve objects well into the subnanometer scale, these systems operate under conditions not ideal for the study of biological samples. Detecting individual fluorescent labels attached to biological molecules of interest using charge-coupled devices (CCDs) - arrays of silicon chips that convert incoming light into an electrical charge, has yielded resolutions as fine as five nanometers. However, until now this technology has been unable to image single molecules or distances between a pair of molecules much less than 20 nanometers.

Chu and his co-authors were able to use the same CCD-fluorescence technology to resolve distances with subnanometer precision and accuracy by correcting a trick of the light. The electrical charges in a CCD array are created when photons strike the silicon and dislodge electrons, with the strength of the charge being proportional to the intensity of the incident photons. However, depending upon precisely where a photon hits the surface of a silicon chip, there can be a slight difference in how the photon is absorbed and whether it generates a measurable charge. This non-uniformity in the response of the CCD silicon array to incoming photons, which is probably an artifact of the chip manufacturing process, results in a blurring of pixels that makes it difficult to resolve two points that are within a few nanometers of one another.

"We have developed an active feedback system that allows us to place the image of a single fluorescent molecule anywhere on the CCD array with sub-pixel precision, which in turn enables us to work in a region smaller than the typical three pixel length-scale of the CCD non-uniformity," says Pertsinidis, who is the lead author on the Nature paper. "With this feedback system plus the use of additional optical beams to stabilize the microscope system, we can create a calibrated region on the silicon array where the error due to non-uniformity is reduced to 0.5 nanometers. By placing the molecules we want to measure in the center of this region we can obtain subnanometer resolution using a conventional optical microscope that you can find in any biology lab."

Chu says that the ability to move the stage of a microscope small distances and calculate the geometric center (centroid) of the image makes it possible to not only measure the photo-response non-uniformity between pixels, but also to measure the non-uniformity within each individual pixel.

"Knowing this non-uniformity then allows us to make corrections between the apparent position and the real position of the image's centroid," says Chu. "Since this non-uniform response is built into the CCD array and does not change from day to day, our active feedback system allows us to image repeatedly at the same position of the CCD array."

Pertsinidis is continuing to work with Chu and others in the group on the further development and application of this super-resolution technique. In addition to the human RNA polymerase II system, he and the group are using it to determine the structure of the Epithelial cadherin molecules that are responsible for the cell-to-cell adhesion that holds tissue and other biological materials together. Pertsinidis, Zhang, and another postdoc in Chu's research group, Sang Ryul Park, are also using this technique to create 3D measurements of the molecular organization inside brain cells.

"The idea is to determine the structure and dynamics of the vesicle fusion process that releases the neurotransmitter molecules used by neurons to communicate with one another," Pertsinidis says. "Right now we are getting in situ measurements with a resolution of about 10 nanometers, but we think we can push this resolution to within two nanometers."

In a collaboration with Joe Gray, Berkeley Lab's Associate Director for Life Sciences and a leading cancer researcher, postdocs in Chu's research group are also using the super-resolution technique to study the attachment of signaling molecules on the RAS protein, which has been linked to a number of cancers, including those of the breast, pancreas, lung and colon. This research could help explain why cancer therapies that perform well on some patients are ineffective on others.

In addition to its biological applications, Pertsinidis, Zhang and Chu in their Nature paper say their super-resolution technique should also prove valuable to characterize and design precision photometric imaging systems in atomic physics or astronomy, and allow for new tools in optical lithography and nanometrology.

This research was supported by the National Institutes of Health, the National Science Foundation, the National Aeronautics and Space Administration, and the Defense Advanced Research Projects Agency.

####

About Lawrence Berkeley National Laboratory
Berkeley Lab is a U.S. Department of Energy (DOE) national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the DOE Office of Science. Visit our Website at www.lbl.gov

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Announcements

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Tools

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Nanobiotechnology

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Research partnerships

University of Waterloo Visits China to Strengthen Bonds With Research Partners April 21st, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE