Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Magnets trump metallics

Rice University Professor Junichiro Kono, standing, and graduate student Thomas Searles set out to study interactions between magnetic fields and electrically charged particles and found that strong magnets can stop the flow of electrons through metallic single-walled carbon nanotubes. (Credit Jeff Fitlow/Rice University)
Rice University Professor Junichiro Kono, standing, and graduate student Thomas Searles set out to study interactions between magnetic fields and electrically charged particles and found that strong magnets can stop the flow of electrons through metallic single-walled carbon nanotubes. (Credit Jeff Fitlow/Rice University)

Abstract:
Magnetic fields can block conductivity of carbon nanotubes

Magnets trump metallics

Houston, TX | Posted on July 8th, 2010

Metallic carbon nanotubes show great promise for applications from microelectronics to power lines because of their ballistic transmission of electrons. But who knew magnets could stop those electrons in their tracks?

Rice physicist Junichiro Kono and his team have been studying the Aharonov-Bohm effect -- the interaction between electrically charged particles and magnetic fields -- and how it relates to carbon nanotubes. While doing so, they came to the unexpected conclusion that magnetic fields can turn highly conductive nanotubes into semiconductors.

Their findings are published online this month in Physical Review Letters.

"When you apply a magnetic field, a band gap opens up and it becomes an insulator," said Kono, a Rice professor in electrical and computer engineering and in physics and astronomy. "You are changing a conductor into a semiconductor, and you can switch between the two. So this experiment explores both an important aspect of the results of the Aharonov-Bohm effect and the novel magnetic properties of carbon nanotubes."

Kono, graduate student Thomas Searles and their colleagues at the National Institute of Standards and Technology (NIST) and in Japan successfully measured the magnetic susceptibility of a variety of nanotubes for the first time; they confirmed that metallics are far more susceptible to magnetic fields than semiconducting nanotubes, depending upon the orientation and strength of the field.

Single-walled nanotubes (SWNTs) -- rolled-up sheets of graphene -- would all look the same to the naked eye if one could see them. But a closer look reveals nanotubes come in many forms, or chiralities, depending on how they're rolled. Some are semiconducting; some are highly conductive metallics. The gold standard for conductivity is the armchair nanotube, so-called because the open ends form a pattern that looks like armchairs.

Not just any magnet would do for their experiments. Kono and Searles traveled to the Tsukuba Magnet Laboratory at the National Institute for Materials Science (NIMS) in Japan, where the world's second-largest electromagnet was used to tease a refined ensemble of 10 chiralities of SWNTs, some metallic and some semiconducting, into giving up their secrets.

By ramping the big magnet up to 35 tesla, they found that the nanotubes would begin to align themselves in parallel and that the metallics reacted far more strongly than the semiconductors. (For comparison, the average MRI machine for medical imaging has electromagnets rated at 0.5 to 3 tesla.) Spectroscopic analysis confirmed the metallics, particularly armchair nanotubes, were two to four times more susceptible to the magnetic field than semiconductors and that each chirality reacted differently.

The nanotubes were all about 0.7 to 0.8 nanometers (or billionths of a meter) wide and 500 nanometers long, so variations in size were not a factor in results by Searles. He spent a week last fall running experiments at the Tsukuba facility's "hybrid," a large-bore superconducting magnet that contains a water-cooled resistive magnet.

Kono said the work would continue on purified batches of nanotubes produced by ultracentrifugation at Rice. That should yield more specific information about their susceptibility to magnetic fields, though he suspects the effect should be even stronger in longer metallics. "This work clearly shows that metallic tubes and semiconducting tubes are different, but now that we have metallic-enriched samples, we can compare different chiralities within the metallic family," he said.

Co-authors of the paper include Yasutaka Imanaka and Tadashi Takamasu of NIMS, Tsukuba, Japan; Hiroshi Ajiki of the Photon Pioneers Center at Osaka University, Japan; and Jeffrey Fagan and Erik Hobbie, researchers at NIST, Gaithersburg, Md.

Searles conducted the majority of the research during a visit to NIMS supported in part by a National Science Foundation Partnerships for International Research and Education grant to Kono and his co-principal investigators. Other funding came from the Department of Energy Office of Basic Energy Sciences, the Robert A. Welch Foundation and the Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Read the abstract here: prl.aps.org/abstract/PRL/v105/i1/e017403

####

For more information, please click here

Contacts:
David Ruth
Director of National Media Relations
Rice University
Houston, Texas
(W) 713-348-6327
(C) 612-702-9473

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Speed at its limits September 30th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Govt.-Legislation/Regulation/Funding/Policy

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Academic/Education

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

Nanotubes/Buckyballs

Elsevier Publishes New Content on Graphene and Materials Science: Books Discuss Properties and Emerging Applications of Carbon Nanotubes, Graphene and Nanomaterials September 25th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Childrenís Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Discoveries

Research mimics brain cells to boost memory power September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Announcements

Park Systems Announces Outsourced Analytical Services Including AFM Surface Imaging, Data Analysis and Interpretation September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Research partnerships

Research mimics brain cells to boost memory power September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Teijin Aramidís carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

Smallest-possible diamonds form ultra-thin nanothread September 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE