Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Shocking results from diamond anvil cell experiments

The diamond anvil cell is small enough to fit in the palm of one’s hand, but it can compress a sample to extreme pressures ­ up to about 3.6 million atmospheres at room temperature and 1.7 million atmospheres at 3,000°C.
The diamond anvil cell is small enough to fit in the palm of one’s hand, but it can compress a sample to extreme pressures ­ up to about 3.6 million atmospheres at room temperature and 1.7 million atmospheres at 3,000°C.

Abstract:
At first, nanoshocks may seem like something to describe the millions of aftershocks of a large earthquake. But Lawrence Livermore National Laboratory physicists are using an ultra-fast laser-based technique they dubbed "nanoshocks" for something entirely different.

Shocking results from diamond anvil cell experiments

Livermore, CA | Posted on July 7th, 2010

In fact, the "nanoshocks" have such a small spatial scale that scientists can use them to study shock behavior in tiny samples such as thin films or other systems with microscopic dimensions (a few tens of micrometers). In particular they have used the technique to shock materials under high static pressure in a diamond anvil cell (DAC).

Using a DAC, which probes the behavior of materials under ultra-high pressures (and which requires small samples), the team statically compressed a sample of argon up to 78,000 atmospheres of pressure and then further shock compressed it up to a total of 280,000 atmospheres. They analyzed the propagating shock waves using an ultra-fast interferometric technique. They achieved combinations of pressures, temperatures and time scales that are otherwise inaccessible.

In some experiments they observed a metastable argon state that may have been superheated -- a state at a pressure and temperature at which argon would normally be liquid but because of the ultra-short time scale does not have enough time to melt.

"It can be used to study fundamental physical and chemical processes as well as improve our understanding of a wide range of real-world problems ranging from detonation phenomena to the interiors of planets," said LLNL physicist Jonathan Crowhurst, a co-author of a paper, which will appear in the July 15 edition of the Journal of Applied Physics.

The time scale is short enough to permit direct comparison with molecular dynamics simulations, which usually run for less than a nanosecond (one billionth of a second).

Shocked behavior in microscopic samples can consist of the behavior of shocked explosives before chemistry begins or the high density, low temperature states of light materials such as those that are found in giant gas planets, according to LLNL lead author Michael Armstrong.

"Essentially, this allows us to examine a very broad range of thermodynamic states, including states corresponding to planetary interiors and high density, low-temperature states that have been predicted to exhibit unobserved exotic behavior," Armstrong said.

For decades, compression experiments have been used to determine the thermodynamic states of materials at high pressures and temperatures. The results are necessary to correctly interpret seismic data, understand planetary composition and the evolution of the early solar system, shock-wave induced chemistry and fundamental issues in condensed matter physics.

Armstrong said their technique for launching and analyzing nanoshocks was so fast they were able to see behavior in microscopic samples that is inaccessible in experiments using static or single-shock wave compression.

Other LLNL team members include Sorin Bastea and Joseph Zaug.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Physics

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Halas wins American Physical Society's Lilienfeld Prize: Rice University nanoscientist honored for pioneering research in plasmonics October 23rd, 2017

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Chemistry

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Researchers greenlight gas detection at room temperature October 26th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Tools

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Nanometrics Announces $50 Million Share Repurchase Program November 15th, 2017

Nanometrics Board of Directors Names Pierre-Yves Lesaicherre President and CEO November 14th, 2017

Oxford Instruments announces winner of the 2017 Sir Martin Wood Prize for Japan November 14th, 2017

Photonics/Optics/Lasers

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Practical superconducting nanowire single photon detector with record detection efficiency over 90 percent November 9th, 2017

Metal-silicone microstructures could enable new flexible optical and electrical devices: Laser-based method creates force-sensitive, flexible microstructures that conduct electricity November 1st, 2017

Nanoparticles with pulse laser controlled antibacterial properties October 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project