Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Shocking results from diamond anvil cell experiments

The diamond anvil cell is small enough to fit in the palm of ones hand, but it can compress a sample to extreme pressures  up to about 3.6 million atmospheres at room temperature and 1.7 million atmospheres at 3,000C.
The diamond anvil cell is small enough to fit in the palm of ones hand, but it can compress a sample to extreme pressures up to about 3.6 million atmospheres at room temperature and 1.7 million atmospheres at 3,000C.

Abstract:
At first, nanoshocks may seem like something to describe the millions of aftershocks of a large earthquake. But Lawrence Livermore National Laboratory physicists are using an ultra-fast laser-based technique they dubbed "nanoshocks" for something entirely different.

Shocking results from diamond anvil cell experiments

Livermore, CA | Posted on July 7th, 2010

In fact, the "nanoshocks" have such a small spatial scale that scientists can use them to study shock behavior in tiny samples such as thin films or other systems with microscopic dimensions (a few tens of micrometers). In particular they have used the technique to shock materials under high static pressure in a diamond anvil cell (DAC).

Using a DAC, which probes the behavior of materials under ultra-high pressures (and which requires small samples), the team statically compressed a sample of argon up to 78,000 atmospheres of pressure and then further shock compressed it up to a total of 280,000 atmospheres. They analyzed the propagating shock waves using an ultra-fast interferometric technique. They achieved combinations of pressures, temperatures and time scales that are otherwise inaccessible.

In some experiments they observed a metastable argon state that may have been superheated -- a state at a pressure and temperature at which argon would normally be liquid but because of the ultra-short time scale does not have enough time to melt.

"It can be used to study fundamental physical and chemical processes as well as improve our understanding of a wide range of real-world problems ranging from detonation phenomena to the interiors of planets," said LLNL physicist Jonathan Crowhurst, a co-author of a paper, which will appear in the July 15 edition of the Journal of Applied Physics.

The time scale is short enough to permit direct comparison with molecular dynamics simulations, which usually run for less than a nanosecond (one billionth of a second).

Shocked behavior in microscopic samples can consist of the behavior of shocked explosives before chemistry begins or the high density, low temperature states of light materials such as those that are found in giant gas planets, according to LLNL lead author Michael Armstrong.

"Essentially, this allows us to examine a very broad range of thermodynamic states, including states corresponding to planetary interiors and high density, low-temperature states that have been predicted to exhibit unobserved exotic behavior," Armstrong said.

For decades, compression experiments have been used to determine the thermodynamic states of materials at high pressures and temperatures. The results are necessary to correctly interpret seismic data, understand planetary composition and the evolution of the early solar system, shock-wave induced chemistry and fundamental issues in condensed matter physics.

Armstrong said their technique for launching and analyzing nanoshocks was so fast they were able to see behavior in microscopic samples that is inaccessible in experiments using static or single-shock wave compression.

Other LLNL team members include Sorin Bastea and Joseph Zaug.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

A fast solidification process makes material crackle February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

News and information

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

Chemistry

Graphene decharging and molecular shielding February 8th, 2016

Announcements

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

A fast solidification process makes material crackle February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Tools

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Cornell researchers create first self-assembled superconductor February 1st, 2016

Photonics/Optics/Lasers

Scientists create laser-activated superconductor February 8th, 2016

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic