Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers at Rensselaer Polytechnic Institute Develop New Method for Mass-Producing Graphene

Graphene, as seen in the above renderings, is an atom-thick sheet of carbon arranged in a honeycomb structure. It has unique mechanical and electrical properties and is considered a potential heir to copper and silicon as the fundamental building blocks of nanoelectronics, but is difficult to produce in bulk. A team of Rensselaer researchers has brought science a step closer to realizing this important goal of a simple, efficient way to mass-produce graphene. Image Credit: Rensselaer/Kar
Graphene, as seen in the above renderings, is an atom-thick sheet of carbon arranged in a honeycomb structure. It has unique mechanical and electrical properties and is considered a potential heir to copper and silicon as the fundamental building blocks of nanoelectronics, but is difficult to produce in bulk. A team of Rensselaer researchers has brought science a step closer to realizing this important goal of a simple, efficient way to mass-produce graphene. Image Credit: Rensselaer/Kar

Abstract:
New, Simple Technique Enables Large-Scale Production of Graphene at Room Temperature; Researchers Use Graphene to Build Chemical Sensors, Ultracapacitors

Researchers at Rensselaer Polytechnic Institute Develop New Method for Mass-Producing Graphene

Troy, NY | Posted on June 23rd, 2010

Researchers at Rensselaer Polytechnic Institute have developed a simple new method for producing large quantities of the promising nanomaterial graphene. The new technique works at room temperature, needs little processing, and paves the way for cost-effective mass production of graphene.

An atom-thick sheet of carbon arranged in a honeycomb structure, graphene has unique mechanical and electrical properties and is considered a potential heir to copper and silicon as the fundamental building block of nanoelectronics. Since graphene's discovery in 2004, researchers have been searching for an easy method to produce it in bulk quantities.

A team of interdisciplinary researchers, led by Swastik Kar, research assistant professor in the Department of Physics, Applied Physics, and Astronomy at Rensselaer, has brought science a step closer to realizing this important goal. By submerging graphite in a mixture of dilute organic acid, alcohol, and water, and then exposing it to ultrasonic sound, the team discovered that the acid works as a "molecular wedge, " which separates sheets of graphene from the parent graphite. The process results in the creation of large quantities of undamaged, high-quality graphene dispersed in water. Kar and team then used the graphene to build chemical sensors and ultracapacitors.

"There are other known techniques for fabricating graphene, but our process is advantageous for mass production as it is low cost, performed at room temperature, devoid of any harsh chemicals, and thus is friendly to a number of technologies where temperature and environmental limitations exist," Kar said. "The process does not need any controlled environment chambers, which enhances its simplicity without compromising its scalability. This simplicity enabled us to directly demonstrate high-performance applications related to environmental sensing and energy storage, which have become issues of global importance."

Results of the study, titled "Stable Aqueous Dispersions of Non-Covalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications," were published online Thursday, June 17, 2010, by the journal Nano Letters. The study will also be the cover story of the November print edition of Nano Letters.

Graphene eluded scientists for years but was finally made in the laboratory in 2004 with the help of a common office supply - clear adhesive tape. Graphite, the common material used in most pencils, is made up of countless layers of graphene. Researchers at first simply used the gentle stickiness of tape to pull layers of graphene from a piece of graphite.

Today, graphene fabrication is much more sophisticated. The most commonly used method, however, which involves oxidizing graphite and reducing the oxide at a later stage in the process, results in a degradation of graphene's attractive conductive properties, Kar said. His team took a different route.

The researchers dissolved 1-pyrenecarboxylic acid (PCA) in a solution of water and methanol, and then introduced bulk graphite powder. The pyrene part of PCA is mostly hydrophobic, and clings to the surface of the also-hydrophobic graphite. The mixture is exposed to ultrasonic sound, which vibrates and agitates the graphite. As the molecular bonds holding together the graphene sheets in graphite start to weaken because of the agitation, the PCA also exploits these weakening bonds and works its way between the layers of graphene that make up the graphite. Ultimately, this coordinated attack results in layers of graphene flaking off of the graphite and into the water. The PCA also helps ensure the graphene does not clump and remains evenly dispersed in the water. Water is benign, and is an ideal vehicle through which graphene can be introduced into new applications and areas of research, Kar said.

"We believe that our method also will be useful for applications of graphene which require an aqueous medium, such as biomolecular experiments with living cells, or investigations involving glucose or protein interactions with graphene," he said.

Using ultrathin membranes fabricated from graphene, the research team developed chemical sensors that can easily identify ethanol from within a mixture of different gases and vapors. Such a sensor could possibly be used as an industrial leakage detector or a breath-alcohol analyzer. The researchers also used the graphene to build an ultra-thin energy-storage device. The double-layer capacitor demonstrated high specific capacitance, power, and energy density, and performed far superior to similar devices fabricated in the past using graphene. Both devices show great promise for further performance enhancements, Kar said.

Co-authors on the Nano Letters paper are Rensselaer Post Doctoral Research Associate Xiaohong An; Assistant Professor Kim M. Lewis; Clinical Professor and Center for Integrated Electronics Associate Director Morris Washington; and Professor Saroj Nayak, all of the Department of Physics, Applied Physics, and Astronomy; Rensselaer post-doctoral researcher Trevor Simmons of the Department of Chemistry and Chemical Biology; along with Rakesh Shah, Christopher Wolfe, and Saikat Talapatra of the Department of Physics at Southern Illinois University Carbondale.

The research project was supported by the Interconnect Focus Center New York at Rensselaer, as well as the National Science Foundation (NSF) Division of Electrical, Communications and Cyber Systems.


For more information on Kar's research, visit his website at:

www.rpi.edu/dept/phys/faculty/profiles/kar.html


For more information on graphene research at Rensselaer, visit:


* Graphene Outperforms Carbon Nanotubes for Creating Stronger, More Crack-Resistant Materials - news.rpi.edu/update.do?artcenterkey=2715

* Student Inventor Tackles Challenge of Hydrogen Storage - news.rpi.edu/update.do?artcenterkey=2690

* Light-Speed Nanotech: Controlling the Nature of Graphene - news.rpi.edu/update.do?artcenterkey=2528

* Graphene Nanoelectronics: Making Tomorrow's Computers from a Pencil Trace - news.rpi.edu/update.do?artcenterkey=2253

####

For more information, please click here

Contacts:
Michael Mullaney
(518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Chemistry

Army discovery opens path to safer batteries May 10th, 2019

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

Russian physicists obtained data on particles self-organization in ultracold dusty plasma March 29th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Possible Futures

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Academic/Education

Pushing Past Limits: Junkai Jiang receives prestigious Ph.D. Student Fellowship from IEEE Electron Devices Society March 14th, 2019

Research Pioneers: Five UCSB professors are named Fellows of the American Association for the Advancement of Science November 27th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

The National Graphene Association Is Excited To Announce A New Affiliate Partnership With Graphene Engineering Innovation Centre (GEIC) November 7th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Self-powered wearable tech May 8th, 2019

Ensure Safety and Keep Costs Down: Solving Industrial Challenges with Nanotube-Containing Polyurethane Shafts April 26th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

Sensors

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Better microring sensors for optical applications May 10th, 2019

Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging April 1st, 2019

A Research Hat-Trick: Mechanical engineering professor Bolin Liao receives third early-career award since September March 26th, 2019

Nanoelectronics

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Discoveries

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Announcements

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Energy

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Skoltech researchers developed new perovskite-inspired semiconductors for electronic devices May 13th, 2019

Exploring New Ways to Control Thermal Radiation April 29th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Army discovery opens path to safer batteries May 10th, 2019

Self-powered wearable tech May 8th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project