Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers at Rensselaer Polytechnic Institute Develop New Method for Mass-Producing Graphene

Graphene, as seen in the above renderings, is an atom-thick sheet of carbon arranged in a honeycomb structure. It has unique mechanical and electrical properties and is considered a potential heir to copper and silicon as the fundamental building blocks of nanoelectronics, but is difficult to produce in bulk. A team of Rensselaer researchers has brought science a step closer to realizing this important goal of a simple, efficient way to mass-produce graphene. Image Credit: Rensselaer/Kar
Graphene, as seen in the above renderings, is an atom-thick sheet of carbon arranged in a honeycomb structure. It has unique mechanical and electrical properties and is considered a potential heir to copper and silicon as the fundamental building blocks of nanoelectronics, but is difficult to produce in bulk. A team of Rensselaer researchers has brought science a step closer to realizing this important goal of a simple, efficient way to mass-produce graphene. Image Credit: Rensselaer/Kar

Abstract:
New, Simple Technique Enables Large-Scale Production of Graphene at Room Temperature; Researchers Use Graphene to Build Chemical Sensors, Ultracapacitors

Researchers at Rensselaer Polytechnic Institute Develop New Method for Mass-Producing Graphene

Troy, NY | Posted on June 23rd, 2010

Researchers at Rensselaer Polytechnic Institute have developed a simple new method for producing large quantities of the promising nanomaterial graphene. The new technique works at room temperature, needs little processing, and paves the way for cost-effective mass production of graphene.

An atom-thick sheet of carbon arranged in a honeycomb structure, graphene has unique mechanical and electrical properties and is considered a potential heir to copper and silicon as the fundamental building block of nanoelectronics. Since graphene's discovery in 2004, researchers have been searching for an easy method to produce it in bulk quantities.

A team of interdisciplinary researchers, led by Swastik Kar, research assistant professor in the Department of Physics, Applied Physics, and Astronomy at Rensselaer, has brought science a step closer to realizing this important goal. By submerging graphite in a mixture of dilute organic acid, alcohol, and water, and then exposing it to ultrasonic sound, the team discovered that the acid works as a "molecular wedge, " which separates sheets of graphene from the parent graphite. The process results in the creation of large quantities of undamaged, high-quality graphene dispersed in water. Kar and team then used the graphene to build chemical sensors and ultracapacitors.

"There are other known techniques for fabricating graphene, but our process is advantageous for mass production as it is low cost, performed at room temperature, devoid of any harsh chemicals, and thus is friendly to a number of technologies where temperature and environmental limitations exist," Kar said. "The process does not need any controlled environment chambers, which enhances its simplicity without compromising its scalability. This simplicity enabled us to directly demonstrate high-performance applications related to environmental sensing and energy storage, which have become issues of global importance."

Results of the study, titled "Stable Aqueous Dispersions of Non-Covalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications," were published online Thursday, June 17, 2010, by the journal Nano Letters. The study will also be the cover story of the November print edition of Nano Letters.

Graphene eluded scientists for years but was finally made in the laboratory in 2004 with the help of a common office supply - clear adhesive tape. Graphite, the common material used in most pencils, is made up of countless layers of graphene. Researchers at first simply used the gentle stickiness of tape to pull layers of graphene from a piece of graphite.

Today, graphene fabrication is much more sophisticated. The most commonly used method, however, which involves oxidizing graphite and reducing the oxide at a later stage in the process, results in a degradation of graphene's attractive conductive properties, Kar said. His team took a different route.

The researchers dissolved 1-pyrenecarboxylic acid (PCA) in a solution of water and methanol, and then introduced bulk graphite powder. The pyrene part of PCA is mostly hydrophobic, and clings to the surface of the also-hydrophobic graphite. The mixture is exposed to ultrasonic sound, which vibrates and agitates the graphite. As the molecular bonds holding together the graphene sheets in graphite start to weaken because of the agitation, the PCA also exploits these weakening bonds and works its way between the layers of graphene that make up the graphite. Ultimately, this coordinated attack results in layers of graphene flaking off of the graphite and into the water. The PCA also helps ensure the graphene does not clump and remains evenly dispersed in the water. Water is benign, and is an ideal vehicle through which graphene can be introduced into new applications and areas of research, Kar said.

"We believe that our method also will be useful for applications of graphene which require an aqueous medium, such as biomolecular experiments with living cells, or investigations involving glucose or protein interactions with graphene," he said.

Using ultrathin membranes fabricated from graphene, the research team developed chemical sensors that can easily identify ethanol from within a mixture of different gases and vapors. Such a sensor could possibly be used as an industrial leakage detector or a breath-alcohol analyzer. The researchers also used the graphene to build an ultra-thin energy-storage device. The double-layer capacitor demonstrated high specific capacitance, power, and energy density, and performed far superior to similar devices fabricated in the past using graphene. Both devices show great promise for further performance enhancements, Kar said.

Co-authors on the Nano Letters paper are Rensselaer Post Doctoral Research Associate Xiaohong An; Assistant Professor Kim M. Lewis; Clinical Professor and Center for Integrated Electronics Associate Director Morris Washington; and Professor Saroj Nayak, all of the Department of Physics, Applied Physics, and Astronomy; Rensselaer post-doctoral researcher Trevor Simmons of the Department of Chemistry and Chemical Biology; along with Rakesh Shah, Christopher Wolfe, and Saikat Talapatra of the Department of Physics at Southern Illinois University Carbondale.

The research project was supported by the Interconnect Focus Center New York at Rensselaer, as well as the National Science Foundation (NSF) Division of Electrical, Communications and Cyber Systems.


For more information on Kar's research, visit his website at:

www.rpi.edu/dept/phys/faculty/profiles/kar.html


For more information on graphene research at Rensselaer, visit:


* Graphene Outperforms Carbon Nanotubes for Creating Stronger, More Crack-Resistant Materials - news.rpi.edu/update.do?artcenterkey=2715

* Student Inventor Tackles Challenge of Hydrogen Storage - news.rpi.edu/update.do?artcenterkey=2690

* Light-Speed Nanotech: Controlling the Nature of Graphene - news.rpi.edu/update.do?artcenterkey=2528

* Graphene Nanoelectronics: Making Tomorrow's Computers from a Pencil Trace - news.rpi.edu/update.do?artcenterkey=2253

####

For more information, please click here

Contacts:
Michael Mullaney
(518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360ís Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Chemistry

Syracuse University chemists add color to chemical reactions: Chemists in the College of Arts and Sciences have come up with an innovative new way to visualize and monitor chemical reactions in real time May 19th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Physicists measure van der Waals forces of individual atoms for the first time May 14th, 2016

Atomic force microscope reveals molecular ghosts: Mapping molecules with atomic precision expands toolbox for designing new catalytic reactions May 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Possible Futures

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Sensors

The next generation of carbon monoxide nanosensors May 26th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Electronic device detects molecules linked to cancer, Alzheimer's and Parkinson's: An inexpensive portable biosensor has been developed by researchers at Brazil's National Nanotechnology Laboratory with FAPESP's support May 20th, 2016

Making organs transparent to improve nanomedicine (video) May 13th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Discoveries

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Announcements

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Energy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Distance wireless charging enhanced by magnetic metamaterials: A metamaterial shell is capable of multiplying transmission efficiency several times over May 13th, 2016

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

Visualizing the Lithiation of a Nanosized Iron-Oxide Material in Real Time: Electron microscopy technique reveals the reaction pathways that emerge as lithium ions are added to magnetite nanoparticles May 9th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic