Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Insights on quantum mechanics

This sketch shows how a quantum gas microscope hones in on individual atoms in the gas.
This sketch shows how a quantum gas microscope hones in on individual atoms in the gas.

Abstract:
Harvard physicists create simulative process to gauge unseen forces

By Steve Bradt, Harvard Staff Writer

Insights on quantum mechanics

Cambridge, MA | Posted on June 19th, 2010

For the first time, physicists at Harvard University have tracked individual atoms in a gas cooled to extreme temperatures as the particles reorganized into a crystal, a process driven by quantum mechanics. The research, described in the journal Science, opens new possibilities for particle-by-particle study and engineering of artificial quantum materials.

"Much of modern technology is driven by engineering materials with novel properties, and the bizarre world of quantum mechanics can contribute to this engineering toolbox," said Markus Greiner, an assistant professor of physics at Harvard, who led the research team. "For example, quantum materials could be used to turn heat into electricity, or in cables that transport electricity very efficiently in a power grid."

"The challenge in understanding the behavior of such materials is that although we have many ideas about how they might work, we lack the tools to verify these theories by looking at and manipulating these materials at the most basic atomic level," Greiner said. "This is the problem we have set out to tackle."

To circumvent the challenges of studying such materials, Greiner and his colleagues created an artificial quantum material, a cold gas of rubidium atoms moving in a lattice made of light. This pancake-shaped cloud, known as a Bose-Einstein condensate, allowed them to study the physics of quantum materials at a much larger scale, essentially simulating what happens in a real material.

The physicists watched individual atoms participate in a dramatic collective transition between two states of matter, similar to the transition that happens when water freezes into ice. But this transition was driven not by temperature but by the researchers' manipulation of interactions between the atoms.

"We counted the number of atoms at each site of the lattice," said co-author Waseem Bakr, a graduate student in Harvard's Department of Physics. "When the interactions between the atoms are weak, the number of atoms varies significantly in different sites due to uncertainty that is intrinsic to quantum mechanics. When we increase the interactions, these fluctuations vanish, and the atoms arrange into an almost perfect crystal."

Such a transition from a superfluid state — in which particles can move with no resistance — to an insulating Mott state — where the atoms can no longer move — was first observed by Greiner and colleagues in 2001. However, a quantum gas microscope developed last year by Greiner's group now allows observation of individual atoms as they undergo this transition.

"This microscope is a versatile tool which should be able to shed light on many other phenomena related to quantum materials, such as magnetic materials," Greiner said. "It could even be used for computations that require enormous resources on current computers."

While a simulation similar to the current experiment could, in principle, be carried out on a computer, Greiner said that such an approach would quickly become infeasible for a system with more than a few dozen atoms.

Greiner and Bakr's co-authors in Harvard's Department of Physics and at the Harvard-MIT Center for Ultracold Atoms are Amy Peng, Eric Tai, Ruichao Ma, Jonathan Simon, Jonathon Gillen, and Lode Pollet, as well as Simon Foelling of Harvard and Ludwig-Maximilians-Universität in Munich. Their work was supported by the Army Research Office, the Defense Advanced Research Projects Agency, the Air Force Office of Scientific Research, the National Science Foundation, the Swiss National Science Foundation, and the Alfred P. Sloan Foundation.

####

For more information, please click here

Contacts:
Tel: 617.495.1000

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Breakthrough in OLED technology March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Academic/Education

Get ready for NanoDays! March 5th, 2015

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Announcements

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Tools

Keysight Technologies Shifts to Direct Sales of High-Performance Products in North America March 3rd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Research partnerships

New research could lead to more efficient electrical energy storage March 4th, 2015

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Quantum nanoscience

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE