Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Insights on quantum mechanics

This sketch shows how a quantum gas microscope hones in on individual atoms in the gas.
This sketch shows how a quantum gas microscope hones in on individual atoms in the gas.

Abstract:
Harvard physicists create simulative process to gauge unseen forces

By Steve Bradt, Harvard Staff Writer

Insights on quantum mechanics

Cambridge, MA | Posted on June 19th, 2010

For the first time, physicists at Harvard University have tracked individual atoms in a gas cooled to extreme temperatures as the particles reorganized into a crystal, a process driven by quantum mechanics. The research, described in the journal Science, opens new possibilities for particle-by-particle study and engineering of artificial quantum materials.

"Much of modern technology is driven by engineering materials with novel properties, and the bizarre world of quantum mechanics can contribute to this engineering toolbox," said Markus Greiner, an assistant professor of physics at Harvard, who led the research team. "For example, quantum materials could be used to turn heat into electricity, or in cables that transport electricity very efficiently in a power grid."

"The challenge in understanding the behavior of such materials is that although we have many ideas about how they might work, we lack the tools to verify these theories by looking at and manipulating these materials at the most basic atomic level," Greiner said. "This is the problem we have set out to tackle."

To circumvent the challenges of studying such materials, Greiner and his colleagues created an artificial quantum material, a cold gas of rubidium atoms moving in a lattice made of light. This pancake-shaped cloud, known as a Bose-Einstein condensate, allowed them to study the physics of quantum materials at a much larger scale, essentially simulating what happens in a real material.

The physicists watched individual atoms participate in a dramatic collective transition between two states of matter, similar to the transition that happens when water freezes into ice. But this transition was driven not by temperature but by the researchers' manipulation of interactions between the atoms.

"We counted the number of atoms at each site of the lattice," said co-author Waseem Bakr, a graduate student in Harvard's Department of Physics. "When the interactions between the atoms are weak, the number of atoms varies significantly in different sites due to uncertainty that is intrinsic to quantum mechanics. When we increase the interactions, these fluctuations vanish, and the atoms arrange into an almost perfect crystal."

Such a transition from a superfluid state — in which particles can move with no resistance — to an insulating Mott state — where the atoms can no longer move — was first observed by Greiner and colleagues in 2001. However, a quantum gas microscope developed last year by Greiner's group now allows observation of individual atoms as they undergo this transition.

"This microscope is a versatile tool which should be able to shed light on many other phenomena related to quantum materials, such as magnetic materials," Greiner said. "It could even be used for computations that require enormous resources on current computers."

While a simulation similar to the current experiment could, in principle, be carried out on a computer, Greiner said that such an approach would quickly become infeasible for a system with more than a few dozen atoms.

Greiner and Bakr's co-authors in Harvard's Department of Physics and at the Harvard-MIT Center for Ultracold Atoms are Amy Peng, Eric Tai, Ruichao Ma, Jonathan Simon, Jonathon Gillen, and Lode Pollet, as well as Simon Foelling of Harvard and Ludwig-Maximilians-Universität in Munich. Their work was supported by the Army Research Office, the Defense Advanced Research Projects Agency, the Air Force Office of Scientific Research, the National Science Foundation, the Swiss National Science Foundation, and the Alfred P. Sloan Foundation.

####

For more information, please click here

Contacts:
Tel: 617.495.1000

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Researchers find the 'key' to quantum network solution May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Quantum physics on tap - Nano-sized faucet offers experimental support for longstanding quantum theory May 16th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Possible Futures

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Announcements

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Production of Copper Cobaltite Nanocomposites with Photocatalytic Properties in Iran May 27th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price – Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Tools

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

DELMIC announces a workshop hosted by Phenom World on Integrated CLEM to be held on Wednesday June 24th at the Francis Crick Institute (Lincoln Inn Fields Laboratory). May 19th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

Quantum nanoscience

Quantum physics on tap - Nano-sized faucet offers experimental support for longstanding quantum theory May 16th, 2015

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project