Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Insights on quantum mechanics

This sketch shows how a quantum gas microscope hones in on individual atoms in the gas.
This sketch shows how a quantum gas microscope hones in on individual atoms in the gas.

Abstract:
Harvard physicists create simulative process to gauge unseen forces

By Steve Bradt, Harvard Staff Writer

Insights on quantum mechanics

Cambridge, MA | Posted on June 19th, 2010

For the first time, physicists at Harvard University have tracked individual atoms in a gas cooled to extreme temperatures as the particles reorganized into a crystal, a process driven by quantum mechanics. The research, described in the journal Science, opens new possibilities for particle-by-particle study and engineering of artificial quantum materials.

"Much of modern technology is driven by engineering materials with novel properties, and the bizarre world of quantum mechanics can contribute to this engineering toolbox," said Markus Greiner, an assistant professor of physics at Harvard, who led the research team. "For example, quantum materials could be used to turn heat into electricity, or in cables that transport electricity very efficiently in a power grid."

"The challenge in understanding the behavior of such materials is that although we have many ideas about how they might work, we lack the tools to verify these theories by looking at and manipulating these materials at the most basic atomic level," Greiner said. "This is the problem we have set out to tackle."

To circumvent the challenges of studying such materials, Greiner and his colleagues created an artificial quantum material, a cold gas of rubidium atoms moving in a lattice made of light. This pancake-shaped cloud, known as a Bose-Einstein condensate, allowed them to study the physics of quantum materials at a much larger scale, essentially simulating what happens in a real material.

The physicists watched individual atoms participate in a dramatic collective transition between two states of matter, similar to the transition that happens when water freezes into ice. But this transition was driven not by temperature but by the researchers' manipulation of interactions between the atoms.

"We counted the number of atoms at each site of the lattice," said co-author Waseem Bakr, a graduate student in Harvard's Department of Physics. "When the interactions between the atoms are weak, the number of atoms varies significantly in different sites due to uncertainty that is intrinsic to quantum mechanics. When we increase the interactions, these fluctuations vanish, and the atoms arrange into an almost perfect crystal."

Such a transition from a superfluid state — in which particles can move with no resistance — to an insulating Mott state — where the atoms can no longer move — was first observed by Greiner and colleagues in 2001. However, a quantum gas microscope developed last year by Greiner's group now allows observation of individual atoms as they undergo this transition.

"This microscope is a versatile tool which should be able to shed light on many other phenomena related to quantum materials, such as magnetic materials," Greiner said. "It could even be used for computations that require enormous resources on current computers."

While a simulation similar to the current experiment could, in principle, be carried out on a computer, Greiner said that such an approach would quickly become infeasible for a system with more than a few dozen atoms.

Greiner and Bakr's co-authors in Harvard's Department of Physics and at the Harvard-MIT Center for Ultracold Atoms are Amy Peng, Eric Tai, Ruichao Ma, Jonathan Simon, Jonathon Gillen, and Lode Pollet, as well as Simon Foelling of Harvard and Ludwig-Maximilians-Universität in Munich. Their work was supported by the Army Research Office, the Defense Advanced Research Projects Agency, the Air Force Office of Scientific Research, the National Science Foundation, the Swiss National Science Foundation, and the Alfred P. Sloan Foundation.

####

For more information, please click here

Contacts:
Tel: 617.495.1000

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

In atomic propellers, quantum phenomena can mimic everyday physics June 1st, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Possible Futures

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Academic/Education

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

Announcements

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Tools

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Research partnerships

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Quantum nanoscience

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

In atomic propellers, quantum phenomena can mimic everyday physics June 1st, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project