Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Answer to saliva mystery has practical impact

Stretching a moistened material contained in a strip on the leading edge of disposable razors demonstrates a long-mysterious phenomenon that causes some fluids to form beads while others do not. Whereas beads form when a bit of saliva is stretched, they do not form when the material on the razor strip is stretched. Researchers have learned why the beading occurs, which could help improve industrial processes and for administering drugs in "personalized medicine." (Gareth H. McKinley/MIT)
Stretching a moistened material contained in a strip on the leading edge of disposable razors demonstrates a long-mysterious phenomenon that causes some fluids to form beads while others do not. Whereas beads form when a bit of saliva is stretched, they do not form when the material on the razor strip is stretched. Researchers have learned why the beading occurs, which could help improve industrial processes and for administering drugs in "personalized medicine." (Gareth H. McKinley/MIT)

Abstract:
Bead formation model could be boon for plastics, pharmaceuticals

Answer to saliva mystery has practical impact

Houston, TX | Posted on June 11th, 2010

Researchers at Rice University, Purdue University and the Massachusetts Institute of Technology have solved a long-standing mystery about why some fluids containing polymers -- including saliva -- form beads when they are stretched and others do not.

The findings are published online this week in the journal Nature Physics.

Study co-author Matteo Pasquali, professor in chemical and biomolecular engineering at Rice, said the study answers fundamental scientific questions and could ultimately lead to improvements as diverse as ink-jet printing, nanomaterial fiber spinning and drug dispensers for "personalized medicine."

Co-author Osman Basaran, Purdue's Burton and Kathryn Gedge Professor of Chemical Engineering, said, "Any kindergartner is familiar with this beading phenomenon, which you can demonstrate by stretching a glob of saliva between your thumb and forefinger. The question is, 'Why does this beading take place only in some fluids containing polymers but not others?'"

Pasquali said, "In answering the question about why some fluids do this and others do not, we are addressing everyday processes that apply to fiber and droplet formation, not just in multibillion-dollar industrial plants but also in fluids produced in living cells."

Saliva and other complex "viscoelastic" fluids like shaving cream and shampoo contain long molecules called polymers. When a strand of viscoelastic fluid is stretched, these polymers can cause a line of beads to form just before the strand breaks.

Pasquali said the explanation for why some viscoelastic fluids form beads and others do not was decades in the making. The origins of the work can be traced to Pasquali's and Basaran's doctoral research adviser, L.E. "Skip" Scriven of the University of Minnesota. Pasquali said Scriven worked out the basics of the competition between capillary, inertial and viscous forces in flows during the 1970s and 1980s. In the mid-1990s, during his doctoral research at Minnesota, Pasquali expanded on Scriven's earlier work to include the effects of viscoelasticity, which originates in liquid microstructures and nanostructures. Finally, Pasquali's former doctoral student, Pradeep Bhat, the lead author of the new study, took up the mantle nine years ago as a Ph.D. student in Pasquali's lab and continued working on the problem for the past three years as a postdoctoral researcher in Basaran's lab at Purdue.

Bhat, Basaran and Pasquali found that a key factor in the beading mechanism is fluid inertia, or the tendency of a fluid to keep moving unless acted upon by an external force.

Other major elements are a fluid's viscosity; the time it takes a stretched polymer molecule to "relax," or snap back to its original shape when stretching is stopped; and the "capillary time," or how long it would take for the surface of the fluid strand to vibrate if plucked.

"It turns out that the inertia has to be large enough and the relaxation time has to be small enough to form beads," Bhat said.

The researchers discovered that bead formation depends on two ratios: the viscous force compared with inertial force and the relaxation time compared with the capillary time.

Additional co-authors include Purdue graduate student Santosh Appathurai; Michael Harris, professor of chemical engineering at Purdue; and Gareth McKinley, professor of mechanical engineering at MIT.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
Jade Boyd
Associate Director and Science Editor
Office of Public Affairs/News & Media Relations
Rice University
(office) 713-348-6778
(cell) 713-302-2447

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Possible Futures

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanomedicine

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

JPK reports on how the University of Glasgow is using their NanoWizard® AFM and CellHesion module to study how cells interact with their surroundings August 2nd, 2017

Discoveries

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Materials/Metamaterials

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Announcements

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Research partnerships

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project