Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Small, Fast, and High Contrast

Annular dark field dynamic transmission electron microscopy (ADF-DTEM) can produce high-contrast images of catalyst nanoparticles with 15 ns temporal resolution (see picture). The contrast improvement provided by this technique enables imaging studies on the dynamics of heterogeneous catalysts at unprecedented spatial and temporal resolution.
Annular dark field dynamic transmission electron microscopy (ADF-DTEM) can produce high-contrast images of catalyst nanoparticles with 15 ns temporal resolution (see picture). The contrast improvement provided by this technique enables imaging studies on the dynamics of heterogeneous catalysts at unprecedented spatial and temporal resolution.

Abstract:
Imaging technique enables studies on the dynamics of nanocatalysts at unprecedented spatial and temporal resolution

Small, Fast, and High Contrast

Weinheim, Germany | Posted on June 2nd, 2010

Tiny catalyst materials may take part in a rich variety of very fast physical and chemical processes which can now be revealed more precisely thanks to a new imaging mode for dynamic transmission electron microscopes (DTEMs) developed by US scientists. "Our group has developed a dark-field imaging mode for DTEM that enables the highest combined spatial and temporal resolution imaging of nanoparticles achieved thus far", says Daniel Masiel of the University of California (Davis) and lead author of the work, which was published online in ChemPhysChem. According to Masiel, annular dark-field DTEM (ADF-DTEM) could, for the first time, enable direct time-resolved observation of processes such as nanowire growth, catalyst poisoning, and Ostwald ripening at nanosecond timescales.

A DTEM is a transmission electron microscope that has been modified to include a laser-driven photocathode that can produce a single intense pulse of electrons with a duration of only 15 ns. While the instrument has the potential to provide insight into nanoparticle catalyst dynamics by enabling direct imaging with high spatial and temporal resolution, the limited signal-to-background ratios attainable for dispersed nanoparticle samples have made such studies difficult to perform at optimal resolutions. To overcome these limitations, Masiel and co-workers have fabricated an annular objective lens aperture that permits images to be obtained with a threefold increase in the signal-to-background ratio. This annular dark-field imaging mode improves the contrast attainable in 15 ns-pulsed electron images and allows particles as small as 30 nm in diameter to be observed (see picture: single-shot pulsed dark-field DTEM image of tiny gold particles dispersed on a holey carbon film at 15 ns time resolution.)

Other techniques such as coherent diffractive imaging (using coherent X-rays) or in situ TEM offer direct imaging data but at the cost of either spatial or temporal resolution. This is not the case for ADF-DTEM, the researchers say—and they are sure that the new method will find applications in important fields of research: "By enabling the scientific community direct experimental insight into the behavior of nanometer-scale systems at nanosecond time intervals, ADF-DTEM promises to give engineers and scientists a powerful method for exploring systems that are at the core of some of the most crucial energy technologies of both today and tomorrow", Masiel says.

Author: Daniel Masiel, Ting Guo, University of California, Davis (USA), nanofast.ucdavis.edu/

Title: Time-Resolved Annular Dark Field Imaging of Catalyst Nanoparticles

ChemPhysChem 2010, 11, No. 10, Permalink to the article: dx.doi.org/10.1002/cphc.201000274

####

For more information, please click here

Copyright © ChemPhysChem

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Chemistry

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Announcements

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Tools

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Nanometrics to Participate in the 10th Annual CEO Investor Summit 2018: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2018 in San Francisco June 28th, 2018

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project