Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Research: Electric Fields Make Ceramic Production Quicker, Cheaper

By applying a 60 Hertz alternating current (AC) field, researchers were able to reduce the grain size of ceramics by 63 percent - and eliminated porosity at 1,250 degrees Celsius, as opposed to the 1,500 degrees Celsius needed without the electric field.
By applying a 60 Hertz alternating current (AC) field, researchers were able to reduce the grain size of ceramics by 63 percent - and eliminated porosity at 1,250 degrees Celsius, as opposed to the 1,500 degrees Celsius needed without the electric field.

Abstract:
Researchers from North Carolina State University have found that applying a small electric field results in faster formation of ceramic products during manufacture at lower temperatures, and enhances the strength of the ceramic itself.

By Matt Shipman

Research: Electric Fields Make Ceramic Production Quicker, Cheaper

Raleigh, NC | Posted on June 2nd, 2010

At issue is a process called sintering, which is how most ceramic products are made. The process involves taking fine ceramic powder, compressing it into the desired shape of the final product, and heating it. Under high heat, the atoms of the powder material bond by diffusion - meaning the atoms of different powder grains move around, bonding the fine powder particles together. Sintering eliminates porosity in the ceramic product, which significantly strengthens the material.

"By applying a 60 Hertz alternating current (AC) field, we were able to eliminate porosity at 1,250 degrees Celsius - as opposed to the 1,500 degrees Celsius needed without the electric field," says Dr. Hans Conrad, emeritus professor of materials science and engineering at NC State and co-author of the study. In addition, the researchers were able to reduce the grain size of the ceramic by 63 percent - creating grains with a diameter of 134 nanometers (nm), as opposed to the 360 nm diameter grains produced using conventional sintering methods. Smaller grain size makes a ceramic stronger, because the larger a grain is, the easier it is for cracks to both form and spread.

Ceramics make up significant components of an array of products, including insulators, spark plugs, fuel cells, body armor, gas turbines, nuclear rods, high temperature ball bearings, high temperature structural materials and heat shields.

The researchers were able to achieve similar, but less significant, results using an electric field created by direct current (DC). Porosity was eliminated at 1,400 degrees Celsius using DC, and grain size was reduced to a diameter of 217 nm - both still dramatic improvements over current sintering techniques. The field used for both AC and DC fields was 13.9 volts/cm.

"We found that the use of a small electric field - with a current of only six-tenths to eight-tenths of an amp per centimeter squared - can result in improved sintering rates with much finer grain size," Conrad says. In other words, ceramics manufacturers can make their products more quickly and cheaply by using an inexpensive electric field - and make their product stronger as well.

"You don't use much energy, and you put it right at the atomic site where it is needed - rather than using more energy to create higher temperatures in a kiln, which is less efficient," Conrad says. "If you want to make a strong ceramic, you want to eliminate porosity and keep the grain size as small as possible. And you want to do it at the lowest cost - which means using the smallest amount of energy and doing it at the lowest temperature at the fastest rate possible. Using an electric field achieves all of these goals."

The research is described in "Enhanced sintering rate of zirconia (3Y-TZP) by application of a small AC electric field," which will be published in a forthcoming issue of Scripta Materialia. The lead author of the paper is Dr. Di Yang, a senior research associate at NC State. This research stemmed from previous work by Yang and Conrad that was funded by the U.S. Army Research Office.

Conrad and Yang are currently working to determine the effects of the frequency and strength of the electric field and to investigate other ceramic materials.

The Department of Materials Science and Engineering is part of NC State's College of Engineering.

The study abstract follows

"Enhanced sintering rate of zirconia (3Y-TZP) by application of a small AC electrical field"

Authors: Di Yang, Hans Conrad North Carolina State University

Published: forthcoming, 2010, Scripta Materialia

Abstract: A small initial electric field E0= 13.9V/cm enhanced the sintering rate of zirconia(3Y-TZP) powder, with a 60Hz AC field having a greater effect than a DC field. The enhancement with both fields was in accord with the retardation of grain growth observed directly with SEM and with that which occurred during grain growth and plastic deformation. Some factors which could contribute to the observed behavior are given.

####

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386

Dr. Hans Conrad
919.515.7443

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Possible Futures

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Academic/Education

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

Materials/Metamaterials

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic