Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Research: Electric Fields Make Ceramic Production Quicker, Cheaper

By applying a 60 Hertz alternating current (AC) field, researchers were able to reduce the grain size of ceramics by 63 percent - and eliminated porosity at 1,250 degrees Celsius, as opposed to the 1,500 degrees Celsius needed without the electric field.
By applying a 60 Hertz alternating current (AC) field, researchers were able to reduce the grain size of ceramics by 63 percent - and eliminated porosity at 1,250 degrees Celsius, as opposed to the 1,500 degrees Celsius needed without the electric field.

Abstract:
Researchers from North Carolina State University have found that applying a small electric field results in faster formation of ceramic products during manufacture at lower temperatures, and enhances the strength of the ceramic itself.

By Matt Shipman

Research: Electric Fields Make Ceramic Production Quicker, Cheaper

Raleigh, NC | Posted on June 2nd, 2010

At issue is a process called sintering, which is how most ceramic products are made. The process involves taking fine ceramic powder, compressing it into the desired shape of the final product, and heating it. Under high heat, the atoms of the powder material bond by diffusion - meaning the atoms of different powder grains move around, bonding the fine powder particles together. Sintering eliminates porosity in the ceramic product, which significantly strengthens the material.

"By applying a 60 Hertz alternating current (AC) field, we were able to eliminate porosity at 1,250 degrees Celsius - as opposed to the 1,500 degrees Celsius needed without the electric field," says Dr. Hans Conrad, emeritus professor of materials science and engineering at NC State and co-author of the study. In addition, the researchers were able to reduce the grain size of the ceramic by 63 percent - creating grains with a diameter of 134 nanometers (nm), as opposed to the 360 nm diameter grains produced using conventional sintering methods. Smaller grain size makes a ceramic stronger, because the larger a grain is, the easier it is for cracks to both form and spread.

Ceramics make up significant components of an array of products, including insulators, spark plugs, fuel cells, body armor, gas turbines, nuclear rods, high temperature ball bearings, high temperature structural materials and heat shields.

The researchers were able to achieve similar, but less significant, results using an electric field created by direct current (DC). Porosity was eliminated at 1,400 degrees Celsius using DC, and grain size was reduced to a diameter of 217 nm - both still dramatic improvements over current sintering techniques. The field used for both AC and DC fields was 13.9 volts/cm.

"We found that the use of a small electric field - with a current of only six-tenths to eight-tenths of an amp per centimeter squared - can result in improved sintering rates with much finer grain size," Conrad says. In other words, ceramics manufacturers can make their products more quickly and cheaply by using an inexpensive electric field - and make their product stronger as well.

"You don't use much energy, and you put it right at the atomic site where it is needed - rather than using more energy to create higher temperatures in a kiln, which is less efficient," Conrad says. "If you want to make a strong ceramic, you want to eliminate porosity and keep the grain size as small as possible. And you want to do it at the lowest cost - which means using the smallest amount of energy and doing it at the lowest temperature at the fastest rate possible. Using an electric field achieves all of these goals."

The research is described in "Enhanced sintering rate of zirconia (3Y-TZP) by application of a small AC electric field," which will be published in a forthcoming issue of Scripta Materialia. The lead author of the paper is Dr. Di Yang, a senior research associate at NC State. This research stemmed from previous work by Yang and Conrad that was funded by the U.S. Army Research Office.

Conrad and Yang are currently working to determine the effects of the frequency and strength of the electric field and to investigate other ceramic materials.

The Department of Materials Science and Engineering is part of NC State's College of Engineering.

The study abstract follows

"Enhanced sintering rate of zirconia (3Y-TZP) by application of a small AC electrical field"

Authors: Di Yang, Hans Conrad North Carolina State University

Published: forthcoming, 2010, Scripta Materialia

Abstract: A small initial electric field E0= 13.9V/cm enhanced the sintering rate of zirconia(3Y-TZP) powder, with a 60Hz AC field having a greater effect than a DC field. The enhancement with both fields was in accord with the retardation of grain growth observed directly with SEM and with that which occurred during grain growth and plastic deformation. Some factors which could contribute to the observed behavior are given.

####

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386

Dr. Hans Conrad
919.515.7443

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Announces Availability of mmWave and RF/Analog on Leading FDX™ FD-SOI Technology Platform: Technology solution delivers ‘connected intelligence’ to next generation high-volume wireless and IoT applications with lower power and significantly reduced cost September 20th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Possible Futures

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Materials/Metamaterials

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Announcements

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project