Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Outstanding in their field effect

Abstract:
Rice researchers print field-effect transistors with nano-infused ink

Outstanding in their field effect

Houston, TX | Posted on May 25th, 2010

Rice University researchers have discovered thin films of nanotubes created with ink-jet printers offer a new way to make field-effect transistors (FET), the basic element in integrated circuits.

While the technique doesn't exactly scale down to the levels required for modern microprocessors, Rice's Robert Vajtai hopes it will be useful to inventors who wish to print transistors on materials of any kind, especially on flexible substrates.

In results reported last week in the online edition of ACS Nano, Rice scientists working with researchers in Finland, Spain and Mexico have created nanotube-based circuitry using high-end ink-jet printers and custom inks.

Vajtai, a faculty fellow in Rice's top-ranked Mechanical Engineering and Materials Science Department, led the study. Pulickel Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry, is a co-author.

The process involved the painstaking analysis of sample circuits printed with single-walled carbon nanotubes functionalized with four types of molecules. The researchers found that a single layer of nanotubes-infused ink printed onto a transparent foil didn't conduct electricity very well. But adding layers increased the connections between nanotubes, and so increased conductivity.

"The key is printing the appropriate number of layers to get the type of conduction you want, either metallic or semiconductive," Vajtai said, adding that researchers made no attempt to separate metallic from semiconducting nanotubes, which greatly simplified the process.

They found that at room temperature, electrical transport took place through the network of semiconducting and metallic nanotubes. At low temperatures, the semiconducting nanotubes became insulators, so electron tunneling between adjacent metallic nanotubes took over.

Ultimately, for building transistors, the team used two of the four studied mixtures of functionalized nanotubes as their building blocks. Nanotubes for conductive channels were treated with polyethylene glycol (PEG) while source, drain and gate electrodes were printed with carboxylated nanotubes. A layer of PEG was used as the gate dielectric.

"This is not a perfect transistor, but it is applicable in digital electronics," Vajtai said. "There are some limitations. I doubt anyone could take a $60 ink-jet printer and print predesigned electronic circuits. But with a high-end printer, it is a fairly straightforward process and allows you to put together whatever you want." He expects manufacturing nano-FETS in bulk would require a process more akin to silk-screening.

Though the researchers' test FETs were relatively large -- about a square millimeter -- they reported that circuits could scale down to about 100 microns, about the width of a human hair, with a channel length of about 35 microns - the size of the print head. Shrinking them further might be possible with smaller print heads or pretreated hydrophilic or hydrophobic surfaces.

Vajtai said nanotube-based FETs will be good for logic-based applications that can be printed on a flexible surface but don't need a large number of circuits. "Say you want to have a raincoat made with transistors - doing whatever a raincoat needs to do that requires electricity, such as controlling and analyzing signals from several sensors and light sources, for safety. It can be done."

The paper's co-authors included primary author Eduardo Gracia-Espino of the Advanced Materials Department, Instituto Potosino de Investigacion Cientifica y Tecnologica, San Luis Potosi, Mexico; Giovanni Sala, Flavio Pino, Niina Halonen, Jani Mäklin, Géza Tóth, Krisztiçn Kordás and Heli Jantunen of the University of Oulu, Finland; Juho Luomahaara, Panu Helistö and Heikki Seppä of the VTT Technical Research Center of Finland; and Mauricio Terrones of the Universidad Carlos III of Madrid.

Funding came from Tekes, the Finnish Funding Agency for Technology and Innovation; the Academy of Finland; NGS-Nano; a National Science Foundation Materials World Network Grant; and a CONACYT-Mexico Ph.D. fellowship.

Read the abstract at: pubs.acs.org/doi/abs/10.1021/nn1000723

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,102 undergraduates and 2,237 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
David Ruth
713-348-6327

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Thin films

Particle size matters for porous building blocks: Rice University scientists find porous nanoparticles get tougher under pressure, but not when assembled December 19th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice University chemists make laser-induced graphene from wood July 31st, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Govt.-Legislation/Regulation/Funding/Policy

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Possible Futures

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Academic/Education

Luleĺ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Chip Technology

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Nanotubes go with the flow to penetrate brain tissue: Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation December 19th, 2017

Nanoelectronics

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor December 28th, 2017

Electronically-smooth '3-D graphene': A bright future for trisodium bismuthide: Electronically-smooth nature of trisodium bismuthide makes it a viable alternative to graphene/h-BN December 22nd, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Teachers in Space, Inc. wins Dream Project contest January 9th, 2018

Research partnerships

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Printing/Lithography/Inkjet/Inks/Bio-printing

Printing Flexible Graphene Supercapacitors December 1st, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project