Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Outstanding in their field effect

Abstract:
Rice researchers print field-effect transistors with nano-infused ink

Outstanding in their field effect

Houston, TX | Posted on May 25th, 2010

Rice University researchers have discovered thin films of nanotubes created with ink-jet printers offer a new way to make field-effect transistors (FET), the basic element in integrated circuits.

While the technique doesn't exactly scale down to the levels required for modern microprocessors, Rice's Robert Vajtai hopes it will be useful to inventors who wish to print transistors on materials of any kind, especially on flexible substrates.

In results reported last week in the online edition of ACS Nano, Rice scientists working with researchers in Finland, Spain and Mexico have created nanotube-based circuitry using high-end ink-jet printers and custom inks.

Vajtai, a faculty fellow in Rice's top-ranked Mechanical Engineering and Materials Science Department, led the study. Pulickel Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry, is a co-author.

The process involved the painstaking analysis of sample circuits printed with single-walled carbon nanotubes functionalized with four types of molecules. The researchers found that a single layer of nanotubes-infused ink printed onto a transparent foil didn't conduct electricity very well. But adding layers increased the connections between nanotubes, and so increased conductivity.

"The key is printing the appropriate number of layers to get the type of conduction you want, either metallic or semiconductive," Vajtai said, adding that researchers made no attempt to separate metallic from semiconducting nanotubes, which greatly simplified the process.

They found that at room temperature, electrical transport took place through the network of semiconducting and metallic nanotubes. At low temperatures, the semiconducting nanotubes became insulators, so electron tunneling between adjacent metallic nanotubes took over.

Ultimately, for building transistors, the team used two of the four studied mixtures of functionalized nanotubes as their building blocks. Nanotubes for conductive channels were treated with polyethylene glycol (PEG) while source, drain and gate electrodes were printed with carboxylated nanotubes. A layer of PEG was used as the gate dielectric.

"This is not a perfect transistor, but it is applicable in digital electronics," Vajtai said. "There are some limitations. I doubt anyone could take a $60 ink-jet printer and print predesigned electronic circuits. But with a high-end printer, it is a fairly straightforward process and allows you to put together whatever you want." He expects manufacturing nano-FETS in bulk would require a process more akin to silk-screening.

Though the researchers' test FETs were relatively large -- about a square millimeter -- they reported that circuits could scale down to about 100 microns, about the width of a human hair, with a channel length of about 35 microns - the size of the print head. Shrinking them further might be possible with smaller print heads or pretreated hydrophilic or hydrophobic surfaces.

Vajtai said nanotube-based FETs will be good for logic-based applications that can be printed on a flexible surface but don't need a large number of circuits. "Say you want to have a raincoat made with transistors - doing whatever a raincoat needs to do that requires electricity, such as controlling and analyzing signals from several sensors and light sources, for safety. It can be done."

The paper's co-authors included primary author Eduardo Gracia-Espino of the Advanced Materials Department, Instituto Potosino de Investigacion Cientifica y Tecnologica, San Luis Potosi, Mexico; Giovanni Sala, Flavio Pino, Niina Halonen, Jani Mäklin, Géza Tóth, Krisztiçn Kordás and Heli Jantunen of the University of Oulu, Finland; Juho Luomahaara, Panu Helistö and Heikki Seppä of the VTT Technical Research Center of Finland; and Mauricio Terrones of the Universidad Carlos III of Madrid.

Funding came from Tekes, the Finnish Funding Agency for Technology and Innovation; the Academy of Finland; NGS-Nano; a National Science Foundation Materials World Network Grant; and a CONACYT-Mexico Ph.D. fellowship.

Read the abstract at: pubs.acs.org/doi/abs/10.1021/nn1000723

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,102 undergraduates and 2,237 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
David Ruth
713-348-6327

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Thin films

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politčcnica de Catalunya May 18th, 2015

Science and Technology of Advanced Materials (STAM): Reported successes and failures aid hot pursuit of superconductivity May 15th, 2015

Govt.-Legislation/Regulation/Funding/Policy

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyčres' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Chip Technology

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Nanotubes/Buckyballs/Fullerenes

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

Nanoelectronics

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

Announcements

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

What makes cancer cells spread? New device offers clues May 19th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

International and U.S. Students and Teachers Headed to Toronto for 34th Annual International Space Development Conference®: Students competed in prestigious NSS-NASA Ames Space Settlement Design Contest May 9th, 2015

Pixelligent Technologies Announces $1M Phase-II OLED Lighting Award From the US Department of Energy May 9th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politčcnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

Printing/Lithography/Inkjet/Inks

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Printing 3-D graphene structures for tissue engineering: A new ink formulation allows for the 3-D printing of graphene structures May 19th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project