Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Penn-Led Collaboration Mimics Library of Bio-Membranes for Use In Nanomedicine, Drug Delivery

Cryo-TEM and 3-D intensity profiles of (A and D) polygonal dendrimersomes. (B and E) Bicontinuous cubic particles co-exist with low concentration of spherical dendrimersomes. (C and F) Micelles. (G and J) Tubular dendrimersomes. (H and K) Rodlike, ribbon and helical micelles. (I and L) Disk-like micelles and toroids. Credit: University of Pennsylvania
Cryo-TEM and 3-D intensity profiles of (A and D) polygonal dendrimersomes. (B and E) Bicontinuous cubic particles co-exist with low concentration of spherical dendrimersomes. (C and F) Micelles. (G and J) Tubular dendrimersomes. (H and K) Rodlike, ribbon and helical micelles. (I and L) Disk-like micelles and toroids. Credit: University of Pennsylvania

Abstract:
An international collaboration led by chemists and engineers from the University of Pennsylvania has prepared a library of synthetic biomaterials that mimic cellular membranes and that show promise in targeted delivery of cancer drugs, gene therapy, proteins, imaging and diagnostic agents and cosmetics safely to the body in the emerging field called nanomedicine.

The study appears in the current issue of the journal Science.

Penn-Led Collaboration Mimics Library of Bio-Membranes for Use In Nanomedicine, Drug Delivery

Philadelphia, PA | Posted on May 22nd, 2010

The research provides the first description of the preparation, structure, self-assembly and mechanical properties of vesicles and other selected complex nano-assemblies made from Janus dendrimers.

The so-called dendrimersomes are stable, bilayer vesicles that spontaneously form from the exact chemical composition of Janus dendrimers. The team reported a myriad of bilayer capsule populations, uniform in size, stable in time in a large variety of media and temperatures, that are tunable by temperature and chemistry with superior mechanical properties to regular liposomes and impermeable to encapsulated compounds. They are capable of incorporating pore-forming proteins, can assemble with structure-directing phospholipids and block copolymers and offer a molecular periphery suitable for chemical functionalization without affecting their self-assembly.

Co-authors Virgil Percec of Penn's Department of Chemistry and Daniel A. Hammer of Penn's Department of Bioengineering, joined by Frank Bates and Timothy Lodge of the University of Minnesota, Michael Klein of Temple University and Kari Rissanen of the Jyväskylä University, in Finland, have chemically coupled hydrophilic and hydrophobic dendrons to create amphiphilic Janus dendrimers with a rich palette of morphologies including cubosomes, disks, tubular vesicles and helical ribbons and confirmed the assembled structures using cryogenic transmission electron microscopy and fluorescence microscopy.

"Dendrimersomes marry the stability and mechanical strength obtainable from polymersomes, vesicles made from block copolymers, with the biological function of stabilized phospholipid liposomes," said Percec, the P. Roy Vagelos Chair and Professor of Chemistry at Penn, "but with superior uniformity of size, ease of formation and chemical functionalization."

"These materials show special promise because their membranes are the thickness of natural bilayer membranes, but they have superior and tunable materials properties," said Hammer, the Alfred G. and Meta A. Ennis Professor of Bioengineering at Penn. "Because of their membrane thickness, it will be more straightforward to incorporate biological components into the vesicle membranes, such as receptors and channels."

"No other single class of molecules including block copolymers and lipids is known to assemble in water into such a diversity of supramolecular structures," said Bates, the Regents Professor and Head of the Chemical Engineering and Materials Science Department at the University of Minnesota.

Self-assembled nanostructures, obtained from natural and synthetic amphiphiles, increasingly serve as mimics of biological membranes and enable the targeted delivery of drugs, nucleic acids, proteins, gene therapy and imaging agents for diagnostic medicine. The challenge for researchers is creating these precise molecular arrangements that combine to function as safe biological carriers while carrying payload within.

Janus dendrimer assemblies offer several advantages to other competing technologies for nano-particle delivery. Liposomes are mimics of cell membranes assembled from natural phospholipids or from synthetic amphiphiles, including polymersomes. But, liposomes are not stable, even at room temperature, and vary widely in size, requiring tedious stabilization and fractionation for all practical applications. Polymersomes, on the other hand, are stable but polydisperse, and most of them are not biocompatible, requiring scientific intervention to combine the best properties of both for nanomedicine. Dendrimersomes offer stability, monodispersity, tenability and versatility, and they significantly advance the science of self-assembled nanostructures for biological and medical applications.

The study was conducted by Percec, Daniela A. Wilson, Pawaret Leowanawat, Christopher J. Wilson, Andrew D. Hughes, Emad Aqad, Brad M. Rosen, Andreea O. Argintaru, Monika J. Sienkowska and Mark S. Kaucher of Penn's Department of Chemistry; Hammer of the Department of Bioengineering, the Department of Chemical and Biomolecular Engineering and the Institute for Medicine and Engineering at Penn; Dalia H. Levine and Anthony J. Kim of Penn's Department of Chemical and Biomolecular Engineering; Bates, Kevin P. Davis and Timothy P. Lodge of the University of Minnesota; Michael L. Klein and Russell H. DeVane of Temple University; Kari Rissanen and Jarmo Ropponen of the University of Jyväskylä in Finland; and Sami Nummelin of the University of Jyväskylä and Aalto University, both in Finland.

Research was funded by National Science Foundation-funded grants at the University of Pennsylvania and the University of Minnesota, as well as by the Academy of Finland, Temple University and the P. Roy Vagelos Chair at the University of Pennsylvania.

####

For more information, please click here

Contacts:
Media Contact:
Jordan Reese

215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Synthetic Biology

Artificial Cells Act Like the Real Thing: Cell-like compartments produce proteins and communicate with one another, similar to natural biological systems August 18th, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Artificial cilia: Scientists from Kiel University develop nano-structured transportation system July 4th, 2014

Artificial enzyme mimics the natural detoxification mechanism in liver cells: Molybdenum oxide particles can assume the function of the endogenous enzyme sulfite oxidase / Basis for new therapeutic application June 30th, 2014

Govt.-Legislation/Regulation/Funding/Policy

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Self Assembly

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Molecular self-assembly controls graphene-edge configuration September 10th, 2014

Rice chemist wins rare NSF Special Creativity Award: Grant extension will bolster Zubarev's effort to produce gold nanorods September 8th, 2014

Nanomedicine

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Announcements

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Personal Care

Sunblock poses potential hazard to sea life August 20th, 2014

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOL® Technology again August 12th, 2014

Nanotechnology used in sunscreens: a Mexican achievement May 14th, 2014

Production of Nanocapsule from Sea-Buckthorn Extract in Iran May 3rd, 2014

Safety-Nanoparticles/Risk management

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Sunblock poses potential hazard to sea life August 20th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Nanobiotechnology

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Research partnerships

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE