Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Penn-Led Collaboration Mimics Library of Bio-Membranes for Use In Nanomedicine, Drug Delivery

Cryo-TEM and 3-D intensity profiles of (A and D) polygonal dendrimersomes. (B and E) Bicontinuous cubic particles co-exist with low concentration of spherical dendrimersomes. (C and F) Micelles. (G and J) Tubular dendrimersomes. (H and K) Rodlike, ribbon and helical micelles. (I and L) Disk-like micelles and toroids. Credit: University of Pennsylvania
Cryo-TEM and 3-D intensity profiles of (A and D) polygonal dendrimersomes. (B and E) Bicontinuous cubic particles co-exist with low concentration of spherical dendrimersomes. (C and F) Micelles. (G and J) Tubular dendrimersomes. (H and K) Rodlike, ribbon and helical micelles. (I and L) Disk-like micelles and toroids. Credit: University of Pennsylvania

Abstract:
An international collaboration led by chemists and engineers from the University of Pennsylvania has prepared a library of synthetic biomaterials that mimic cellular membranes and that show promise in targeted delivery of cancer drugs, gene therapy, proteins, imaging and diagnostic agents and cosmetics safely to the body in the emerging field called nanomedicine.

The study appears in the current issue of the journal Science.

Penn-Led Collaboration Mimics Library of Bio-Membranes for Use In Nanomedicine, Drug Delivery

Philadelphia, PA | Posted on May 22nd, 2010

The research provides the first description of the preparation, structure, self-assembly and mechanical properties of vesicles and other selected complex nano-assemblies made from Janus dendrimers.

The so-called dendrimersomes are stable, bilayer vesicles that spontaneously form from the exact chemical composition of Janus dendrimers. The team reported a myriad of bilayer capsule populations, uniform in size, stable in time in a large variety of media and temperatures, that are tunable by temperature and chemistry with superior mechanical properties to regular liposomes and impermeable to encapsulated compounds. They are capable of incorporating pore-forming proteins, can assemble with structure-directing phospholipids and block copolymers and offer a molecular periphery suitable for chemical functionalization without affecting their self-assembly.

Co-authors Virgil Percec of Penn's Department of Chemistry and Daniel A. Hammer of Penn's Department of Bioengineering, joined by Frank Bates and Timothy Lodge of the University of Minnesota, Michael Klein of Temple University and Kari Rissanen of the Jyväskylä University, in Finland, have chemically coupled hydrophilic and hydrophobic dendrons to create amphiphilic Janus dendrimers with a rich palette of morphologies including cubosomes, disks, tubular vesicles and helical ribbons and confirmed the assembled structures using cryogenic transmission electron microscopy and fluorescence microscopy.

"Dendrimersomes marry the stability and mechanical strength obtainable from polymersomes, vesicles made from block copolymers, with the biological function of stabilized phospholipid liposomes," said Percec, the P. Roy Vagelos Chair and Professor of Chemistry at Penn, "but with superior uniformity of size, ease of formation and chemical functionalization."

"These materials show special promise because their membranes are the thickness of natural bilayer membranes, but they have superior and tunable materials properties," said Hammer, the Alfred G. and Meta A. Ennis Professor of Bioengineering at Penn. "Because of their membrane thickness, it will be more straightforward to incorporate biological components into the vesicle membranes, such as receptors and channels."

"No other single class of molecules including block copolymers and lipids is known to assemble in water into such a diversity of supramolecular structures," said Bates, the Regents Professor and Head of the Chemical Engineering and Materials Science Department at the University of Minnesota.

Self-assembled nanostructures, obtained from natural and synthetic amphiphiles, increasingly serve as mimics of biological membranes and enable the targeted delivery of drugs, nucleic acids, proteins, gene therapy and imaging agents for diagnostic medicine. The challenge for researchers is creating these precise molecular arrangements that combine to function as safe biological carriers while carrying payload within.

Janus dendrimer assemblies offer several advantages to other competing technologies for nano-particle delivery. Liposomes are mimics of cell membranes assembled from natural phospholipids or from synthetic amphiphiles, including polymersomes. But, liposomes are not stable, even at room temperature, and vary widely in size, requiring tedious stabilization and fractionation for all practical applications. Polymersomes, on the other hand, are stable but polydisperse, and most of them are not biocompatible, requiring scientific intervention to combine the best properties of both for nanomedicine. Dendrimersomes offer stability, monodispersity, tenability and versatility, and they significantly advance the science of self-assembled nanostructures for biological and medical applications.

The study was conducted by Percec, Daniela A. Wilson, Pawaret Leowanawat, Christopher J. Wilson, Andrew D. Hughes, Emad Aqad, Brad M. Rosen, Andreea O. Argintaru, Monika J. Sienkowska and Mark S. Kaucher of Penn's Department of Chemistry; Hammer of the Department of Bioengineering, the Department of Chemical and Biomolecular Engineering and the Institute for Medicine and Engineering at Penn; Dalia H. Levine and Anthony J. Kim of Penn's Department of Chemical and Biomolecular Engineering; Bates, Kevin P. Davis and Timothy P. Lodge of the University of Minnesota; Michael L. Klein and Russell H. DeVane of Temple University; Kari Rissanen and Jarmo Ropponen of the University of Jyväskylä in Finland; and Sami Nummelin of the University of Jyväskylä and Aalto University, both in Finland.

Research was funded by National Science Foundation-funded grants at the University of Pennsylvania and the University of Minnesota, as well as by the Academy of Finland, Temple University and the P. Roy Vagelos Chair at the University of Pennsylvania.

####

For more information, please click here

Contacts:
Media Contact:
Jordan Reese

215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Synthetic Biology

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

New tool could help reshape the limits of synthetic biology: The 'telomerator' reshapes synthetic yeast chromosome into more flexible, realistic form, redefining what geneticists can build November 3rd, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Smallest world record has 'endless possibilities' for bio-nanotechnology October 8th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Academic/Education

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene March 18th, 2015

Self Assembly

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Four Scientists With Major Contributions to Research at Brookhaven Lab Named American Physical Society Fellows March 17th, 2015

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Nanomedicine

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Graphene reduces wear of alumina ceramic March 26th, 2015

Application of Graphene Oxide in Body Implants in Iran March 26th, 2015

Nanorobotic agents open the blood-brain barrier, offering hope for new brain treatments March 25th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Personal Care

Sunblock poses potential hazard to sea life August 20th, 2014

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOL® Technology again August 12th, 2014

Nanotechnology used in sunscreens: a Mexican achievement May 14th, 2014

Production of Nanocapsule from Sea-Buckthorn Extract in Iran May 3rd, 2014

Safety-Nanoparticles/Risk management

NNI Publishes Workshop Report Assessing the Status of EHS Risk Science: Report examines progress three years after the release of the 2011 NNI EHS Research Strategy March 23rd, 2015

Are current water treatment methods sufficient to remove harmful engineered nanoparticle? March 10th, 2015

More study needed to clarify impact of cellulose nanocrystals on health: Few studies explore toxicity of cellulose nanocrystals March 10th, 2015

Colon + septic tank = unique, at times stinky, study: Researchers use lab-scale human colon and septic tank to study impact of copper nanoparticles on the environment March 2nd, 2015

Nanobiotechnology

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Dolomite’s microfluidics technology ideal for B cell encapsulation March 24th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

TGAC's take on the first portable DNA sequencing 'laboratory': First remote laboratory allows researchers to conduct real-time anaylsis March 19th, 2015

Research partnerships

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE