Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Penn-Led Collaboration Mimics Library of Bio-Membranes for Use In Nanomedicine, Drug Delivery

Cryo-TEM and 3-D intensity profiles of (A and D) polygonal dendrimersomes. (B and E) Bicontinuous cubic particles co-exist with low concentration of spherical dendrimersomes. (C and F) Micelles. (G and J) Tubular dendrimersomes. (H and K) Rodlike, ribbon and helical micelles. (I and L) Disk-like micelles and toroids. Credit: University of Pennsylvania
Cryo-TEM and 3-D intensity profiles of (A and D) polygonal dendrimersomes. (B and E) Bicontinuous cubic particles co-exist with low concentration of spherical dendrimersomes. (C and F) Micelles. (G and J) Tubular dendrimersomes. (H and K) Rodlike, ribbon and helical micelles. (I and L) Disk-like micelles and toroids. Credit: University of Pennsylvania

Abstract:
An international collaboration led by chemists and engineers from the University of Pennsylvania has prepared a library of synthetic biomaterials that mimic cellular membranes and that show promise in targeted delivery of cancer drugs, gene therapy, proteins, imaging and diagnostic agents and cosmetics safely to the body in the emerging field called nanomedicine.

The study appears in the current issue of the journal Science.

Penn-Led Collaboration Mimics Library of Bio-Membranes for Use In Nanomedicine, Drug Delivery

Philadelphia, PA | Posted on May 22nd, 2010

The research provides the first description of the preparation, structure, self-assembly and mechanical properties of vesicles and other selected complex nano-assemblies made from Janus dendrimers.

The so-called dendrimersomes are stable, bilayer vesicles that spontaneously form from the exact chemical composition of Janus dendrimers. The team reported a myriad of bilayer capsule populations, uniform in size, stable in time in a large variety of media and temperatures, that are tunable by temperature and chemistry with superior mechanical properties to regular liposomes and impermeable to encapsulated compounds. They are capable of incorporating pore-forming proteins, can assemble with structure-directing phospholipids and block copolymers and offer a molecular periphery suitable for chemical functionalization without affecting their self-assembly.

Co-authors Virgil Percec of Penn's Department of Chemistry and Daniel A. Hammer of Penn's Department of Bioengineering, joined by Frank Bates and Timothy Lodge of the University of Minnesota, Michael Klein of Temple University and Kari Rissanen of the Jyväskylä University, in Finland, have chemically coupled hydrophilic and hydrophobic dendrons to create amphiphilic Janus dendrimers with a rich palette of morphologies including cubosomes, disks, tubular vesicles and helical ribbons and confirmed the assembled structures using cryogenic transmission electron microscopy and fluorescence microscopy.

"Dendrimersomes marry the stability and mechanical strength obtainable from polymersomes, vesicles made from block copolymers, with the biological function of stabilized phospholipid liposomes," said Percec, the P. Roy Vagelos Chair and Professor of Chemistry at Penn, "but with superior uniformity of size, ease of formation and chemical functionalization."

"These materials show special promise because their membranes are the thickness of natural bilayer membranes, but they have superior and tunable materials properties," said Hammer, the Alfred G. and Meta A. Ennis Professor of Bioengineering at Penn. "Because of their membrane thickness, it will be more straightforward to incorporate biological components into the vesicle membranes, such as receptors and channels."

"No other single class of molecules including block copolymers and lipids is known to assemble in water into such a diversity of supramolecular structures," said Bates, the Regents Professor and Head of the Chemical Engineering and Materials Science Department at the University of Minnesota.

Self-assembled nanostructures, obtained from natural and synthetic amphiphiles, increasingly serve as mimics of biological membranes and enable the targeted delivery of drugs, nucleic acids, proteins, gene therapy and imaging agents for diagnostic medicine. The challenge for researchers is creating these precise molecular arrangements that combine to function as safe biological carriers while carrying payload within.

Janus dendrimer assemblies offer several advantages to other competing technologies for nano-particle delivery. Liposomes are mimics of cell membranes assembled from natural phospholipids or from synthetic amphiphiles, including polymersomes. But, liposomes are not stable, even at room temperature, and vary widely in size, requiring tedious stabilization and fractionation for all practical applications. Polymersomes, on the other hand, are stable but polydisperse, and most of them are not biocompatible, requiring scientific intervention to combine the best properties of both for nanomedicine. Dendrimersomes offer stability, monodispersity, tenability and versatility, and they significantly advance the science of self-assembled nanostructures for biological and medical applications.

The study was conducted by Percec, Daniela A. Wilson, Pawaret Leowanawat, Christopher J. Wilson, Andrew D. Hughes, Emad Aqad, Brad M. Rosen, Andreea O. Argintaru, Monika J. Sienkowska and Mark S. Kaucher of Penn's Department of Chemistry; Hammer of the Department of Bioengineering, the Department of Chemical and Biomolecular Engineering and the Institute for Medicine and Engineering at Penn; Dalia H. Levine and Anthony J. Kim of Penn's Department of Chemical and Biomolecular Engineering; Bates, Kevin P. Davis and Timothy P. Lodge of the University of Minnesota; Michael L. Klein and Russell H. DeVane of Temple University; Kari Rissanen and Jarmo Ropponen of the University of Jyväskylä in Finland; and Sami Nummelin of the University of Jyväskylä and Aalto University, both in Finland.

Research was funded by National Science Foundation-funded grants at the University of Pennsylvania and the University of Minnesota, as well as by the Academy of Finland, Temple University and the P. Roy Vagelos Chair at the University of Pennsylvania.

####

For more information, please click here

Contacts:
Media Contact:
Jordan Reese

215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Synthetic Biology

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

Rice synthetic biologists shine light on genetic circuit analysis: Bioengineers invent ‘light tube array,’ ‘bioscilloscope’ to test, debug genetic circuits March 10th, 2014

Chemical reactions in artificial cell-scale systems show surprising diversity: The thousand-droplets test February 18th, 2014

Countdown to zero: New 'zero-dimensional' carbon nanotube may lead to superthin electronics and synt December 11th, 2013

Govt.-Legislation/Regulation/Funding/Policy

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Academic/Education

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

University of Waterloo Visits China to Strengthen Bonds With Research Partners April 21st, 2014

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Self Assembly

Roomy cages built from DNA: Self-assembling cages are the largest standalone 3-D DNA structures yet, and could one day deliver drugs, or house tiny bioreactors or photonic devices March 13th, 2014

Cypress’s TrueTouch® Touchscreen Controllers Compatible with Cima NanoTech’s SANTE® Silver Nanoparticle-Based Touch Sensors: Supporting Designs for Advanced Touch Applications March 5th, 2014

Coupled carbon and peptide nanotubes achieved for the first time: twins nanotubes March 1st, 2014

A potentially revolutionnary material: Scientists produce a novel form of artificial graphene February 15th, 2014

Nanomedicine

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Amino-functionalized carbon nanotubes act as a carrier for nerve growth factor April 21st, 2014

Announcements

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Personal Care

Good vibrations: Using light-heated water to deliver drugs - Researchers use near-infrared light to warm water-infused polymeric particles April 1st, 2014

Iranian Food Industry Utilizes Lipid Nanocarriers for Beta-Carotene Enrichment January 23rd, 2014

ASTM International Nanotechnology Committee Approves Airborne Nanoparticle Measurement Standard December 10th, 2013

Antibacterial Nanocomposites Produced from Offset Lithography Inks December 1st, 2013

Safety-Nanoparticles/Risk management

PETA science consortium to present hazard testing strategy at nanotoxicology meeting: High tech field ripe for use of sophisticated non-animal testing strategies April 22nd, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

ECHA Planning Workshop on Regulatory Challenges in the Risk Assessment of Nanomaterials April 16th, 2014

Effects of Carbon Nanotubes Studied on Pregnant Mothers April 12th, 2014

Nanobiotechnology

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Research partnerships

University of Waterloo Visits China to Strengthen Bonds With Research Partners April 21st, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE