Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Putting the Pedal to the Metal

Abstract:
Lithium metal improves fuel cells

Putting the Pedal to the Metal

Weinheim, Germany | Posted on May 20th, 2010

Water splitting is a clean way to generate hydrogen, which is seen by many as the fuel of the future. Scientists from the Energy Technology Research Institute, AIST in Tsukuba, Japan now report in ChemSusChem on a process that uses chemical energy to generate both hydrogen and electricity. The researchers, headed by Haoshen Zhou, foresee the use of this process in fuel cells for mobile applications.

Powering vehicles and devices with fossil-fuel-based energy is not sustainable, and hydrogen has often been proposed as a way out of the current energy gridlock. However, the production of hydrogen can itself result in large carbon dioxide emissions. One way to avoid this drawback is to make use of the energy of sunlight; first storing the energy in chemical entities, and then releasing the stored energy in straightforward reactions in fuel cells that provide mobile power.

Most people have seen their high-school chemistry teacher demonstrate the violent reaction between sodium and water, in which sodium is reduced. The metals that demonstrate this behavior are part of the alkali metals, which also includes potassium, cesium, and lithium. Dr. Zhou and his team report that by containing the reaction between lithium and water in a closed system two goals can be achieved simultaneously: the chemical reaction produces a current as well as hydrogen, in a controllable manner.

The closed fuel cell system has two compartments separated by a membrane: one compartment contains the lithium (anode) in an organic solvent, while the other contains an aqueous electrolyte solution with an electrode (cathode). Upon reaction a current is produced by electrons from the oxidation of lithium, flowing from the anode to the cathode. When the electrons arrive at the cathode, they reduce water to hydrogen.

Controlling the current also controls the rate of hydrogen generation. Another attractive aspect of this technology is that lithium metal can be produced from salt solutions (e.g., sea water) by using sunlight. In other words, energy from the sun can be "stored" in the metal, and then be used on demand by reacting the lithium in the fuel cell. Recharging the battery would be a matter of replacing the lithium metal cell.

According to Zhou, "Lithium, which is already widely used in various lithium ion batteries and will also be applied in the lithium-air fuel cell and this lithium-water/hydrogen/fuel cell system in the future, may lead humanity to enter a new sustainable lithium society, based on smart grid systems of lithium energy networks." The results demonstrated by the researchers from Tsukuba enable the use of sunlight to eventually produce electricity as well as hydrogen, and can contribute to the further development of a sustainable lifestyle through technology.

Author: Haoshen Zhou, Energy Technology Research Institute, Tsukuba (Japan),

Title: Controllable Hydrogen Generation from Water

ChemSusChem 2010, 3, No. 5, 571-574, Permalink: dx.doi.org/10.1002/cssc.201000049

####

For more information, please click here

Contacts:
Editorial office

Copyright © ChemSusChem

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Materials/Metamaterials

From Narrow to Broad July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Energy

From Narrow to Broad July 30th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Automotive/Transportation

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

Fuel Cells

Media Advisory: Minister Rempel to Announce Support for Alberta's Nanotechnology Sector June 20th, 2014

Evolution of a Bimetallic Nanocatalyst June 6th, 2014

University of Surrey collaborates with India and Tata Steel to revolutionise renewable energy March 26th, 2014

Novel membrane reveals water molecules will bounce off a liquid surface: Study may lead to more efficient water-desalination systems, fundamental understanding of fluid flow March 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE