Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Clarkson University Scientists Listen to Faint Sounds Inside Insects

Rendering of a ladybug being recorded by the atomic force microscope (AFM) probe.
Rendering of a ladybug being recorded by the atomic force microscope (AFM) probe.

Abstract:
A team of Clarkson University scientists led by Prof. Igor Sokolov are using atomic force microscopy (AFM) to record sounds emanating from inside living insects like flies, mosquitoes and ladybugs.

Clarkson University Scientists Listen to Faint Sounds Inside Insects

Potsdam, NY | Posted on May 14th, 2010

AFM is one of major scientific tools responsible for the emergence of modern nanotechnology.

The unprecedented sensitivity of AFM allowed the Clarkson team to record sub-nano oscillations of very faint amplitude (less than the size of one atom) at high frequencies (up to 1,000 hertz or cycles per second). Previous work in the study of insects was only done at up to 5 hertz. The sounds are recorded by touching the surface of the bugs with an AFM probe.

The study of these sounds may allow researchers to discover unknown features and physiology of insects. Sokolov hopes these discoveries may help in finding solutions to the problems caused by insect pests.

"Insects are of general interest not only as the most numerous and diverse group of animals on the planet, but also as highly efficient bio-machines varying greatly in size," says Sokolov. "Some are major agricultural pests and competitors of humans for crops. Mosquitoes and other insects are important vectors of plant, animal, and human diseases. Also, vast lands of the earth are still underdeveloped because they are occupied by blood-sucking insects."

You can listen to audio files of the internal sounds of mosquitoes, flies, and ladybugs at: ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-96-038950

The Sokolov team's research is published in the top journal of applied physics, Applied Physics Letters, at apl.aip.org/applab/v96/i4/p043701_s1

The team consisted of Sokolov, who has appointments in Physics, and Chemistry and Biomolecular Science; Maxim Dokukin, a physics postdoctoral fellow; and Nataliia Guz, a physics graduate student; and Sergey Vasilyev, instrumental scientist. The other members of Sokolov's group, physics graduate students Dmytro Volkov, Ravi Gaikwad, and Shyuzhene Li, work on biosensors, self-assembly of particles, and the study of skin aging.

Their research was performed within the Nanoengineering and Biotechnology Laboratories Center (NABLAB), a unit established to promote cross-disciplinary collaborations within the University and led by Sokolov. It comprises more than a dozen faculty members to capitalize on the expertise of Clarkson scholars in the areas of cancer cell research, fine particles for bio and medical applications, synthesis of smart materials, advancement biosensors, etc.

####

About Clarkson University
Clarkson University launches leaders into the global economy. One in six alumni already leads as a CEO, VP or equivalent senior executive of a company. Located just outside the Adirondack Park in Potsdam, N.Y., Clarkson is a nationally recognized research university for undergraduates with select graduate programs in signature areas of academic excellence directed toward the world’s pressing issues. Through 50 rigorous programs of study in engineering, business, arts, sciences and health sciences, the entire learning-living community spans boundaries across disciplines, nations and cultures to build powers of observation, challenge the status quo, and connect discovery and engineering innovation with enterprise.

For more information, please click here

Contacts:
Press Contact
Michael P. Griffin
Director of News & Digital Content Services
315-268-6716

Copyright © Clarkson University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Possible Futures

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Announcements

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Tools

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project