Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Clarkson University Scientists Listen to Faint Sounds Inside Insects

Rendering of a ladybug being recorded by the atomic force microscope (AFM) probe.
Rendering of a ladybug being recorded by the atomic force microscope (AFM) probe.

Abstract:
A team of Clarkson University scientists led by Prof. Igor Sokolov are using atomic force microscopy (AFM) to record sounds emanating from inside living insects like flies, mosquitoes and ladybugs.

Clarkson University Scientists Listen to Faint Sounds Inside Insects

Potsdam, NY | Posted on May 14th, 2010

AFM is one of major scientific tools responsible for the emergence of modern nanotechnology.

The unprecedented sensitivity of AFM allowed the Clarkson team to record sub-nano oscillations of very faint amplitude (less than the size of one atom) at high frequencies (up to 1,000 hertz or cycles per second). Previous work in the study of insects was only done at up to 5 hertz. The sounds are recorded by touching the surface of the bugs with an AFM probe.

The study of these sounds may allow researchers to discover unknown features and physiology of insects. Sokolov hopes these discoveries may help in finding solutions to the problems caused by insect pests.

"Insects are of general interest not only as the most numerous and diverse group of animals on the planet, but also as highly efficient bio-machines varying greatly in size," says Sokolov. "Some are major agricultural pests and competitors of humans for crops. Mosquitoes and other insects are important vectors of plant, animal, and human diseases. Also, vast lands of the earth are still underdeveloped because they are occupied by blood-sucking insects."

You can listen to audio files of the internal sounds of mosquitoes, flies, and ladybugs at: ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-96-038950

The Sokolov team's research is published in the top journal of applied physics, Applied Physics Letters, at apl.aip.org/applab/v96/i4/p043701_s1

The team consisted of Sokolov, who has appointments in Physics, and Chemistry and Biomolecular Science; Maxim Dokukin, a physics postdoctoral fellow; and Nataliia Guz, a physics graduate student; and Sergey Vasilyev, instrumental scientist. The other members of Sokolov's group, physics graduate students Dmytro Volkov, Ravi Gaikwad, and Shyuzhene Li, work on biosensors, self-assembly of particles, and the study of skin aging.

Their research was performed within the Nanoengineering and Biotechnology Laboratories Center (NABLAB), a unit established to promote cross-disciplinary collaborations within the University and led by Sokolov. It comprises more than a dozen faculty members to capitalize on the expertise of Clarkson scholars in the areas of cancer cell research, fine particles for bio and medical applications, synthesis of smart materials, advancement biosensors, etc.

####

About Clarkson University
Clarkson University launches leaders into the global economy. One in six alumni already leads as a CEO, VP or equivalent senior executive of a company. Located just outside the Adirondack Park in Potsdam, N.Y., Clarkson is a nationally recognized research university for undergraduates with select graduate programs in signature areas of academic excellence directed toward the world’s pressing issues. Through 50 rigorous programs of study in engineering, business, arts, sciences and health sciences, the entire learning-living community spans boundaries across disciplines, nations and cultures to build powers of observation, challenge the status quo, and connect discovery and engineering innovation with enterprise.

For more information, please click here

Contacts:
Press Contact
Michael P. Griffin
Director of News & Digital Content Services
315-268-6716

Copyright © Clarkson University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Possible Futures

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Using mathematics to improve human health February 3rd, 2016

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Academic/Education

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

BioSolar Extends Research Agreement With UCSB for Next Phase of Its Super Battery Technology: Development Effort to Continue Under the Supervision of Nobel Laureate, Dr. Alan Heeger January 13th, 2016

Announcements

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Tools

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Cornell researchers create first self-assembled superconductor February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

LC.300 Series Nanopositioning Controller from nPoint January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic