Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Progress Toward Quantum Computing

David Awschalom
David Awschalom

Abstract:
UCSB Scientists Look Beyond Diamond, Develop Road Map for Research on Other Materials with Defects Useful for Quantum Computing

Progress Toward Quantum Computing

Santa Barbara, CA | Posted on May 2nd, 2010

A team of scientists at UC Santa Barbara that helped pioneer research into the quantum properties of a small defect found in diamonds has now used cutting-edge computational techniques to produce a road map for studying defects in alternative materials.

Their new research is published in the online edition of the Proceedings of the National Academy of Sciences (PNAS), and will soon be published in the print edition of the journal. The findings may enable new applications for semiconductors -- materials that are the foundation of today's information technology. In particular, they may help identify alternative materials to use for building a potential quantum computer.

"Our results are likely to have an impact on experimental and theoretical research in diverse areas of science and technology, including semiconductor physics, materials science, magnetism, and quantum device engineering," said David D. Awschalom, UCSB physics professor and one of two lead investigators on this project. "Ironically, while much of semiconductor technology is devoted to eliminating the defects that interfere with how today's devices operate, these defects may actually be useful for future quantum technologies."

According to PNAS, the researchers have developed a set of screening criteria to find specific atomic defects in solids that could act as quantum bits (qubits) in a potential quantum computer. As a point of reference, they use a system whose quantum properties they themselves have recently helped to discern, the NV or nitrogen-vacancy center defect in diamond. This defect, which the team has shown can act as a very fast and stable qubit at room temperature, consists of a stray nitrogen atom alongside a vacancy in the otherwise perfect stacking of carbon atoms in a diamond.

Electrons trapped at the defect's center interact with light and microwaves in a predictable way, allowing information to be stored in and read out from the orientation of their quantum-mechanical spins.

The drawback to using diamond, however, is that the material is expensive and difficult to grow and process into chips. This raises the question of whether there may be defects in other materials that have similar properties and could perform equally well.

In this week's publication, the researchers enumerate specific screening criteria to identify appropriate defects in materials that could be useful for building a quantum computer. Experimental testing of all the potential candidates might take decades of painstaking research, explained Awschalom. To address this problem, the UCSB group employed advanced computational methods to theoretically examine the characteristics of potential defect centers in many different materials, providing a sort of road map for future experiments.

UCSB's Chris G. Van de Walle, professor of materials and one of the senior investigators on the project, remarked: "We tap into the expertise that we have accumulated over the years while examining ‘bad' defects, and channel it productively into designing ‘good' defects; i.e., those that have the necessary characteristics to equal or even outperform the NV center in diamond." This expertise is backed up by advanced theoretical and computational models that enable the reliable prediction of the properties of defects, a number of which are proposed and examined in the paper.

Awschalom added: "We anticipate this work will stimulate additional collaborative activities among theoretical physicists and materials engineers to accelerate progress toward quantum computing based on semiconductors."

Current computers are based on binary logic: each bit can be either "one" or "zero." In contrast, each qubit in a quantum computer is continuously variable between these two states and hence offers infinitely more possibilities to be manipulated and combined with other qubits to produce a desired computational result. "It has been well established that, in theory, quantum computers can tackle some tasks that are completely beyond the capabilities of binary computers," said Awschalom. "The challenge has been to identify real physical systems that can serve as qubits for future machines."

####

For more information, please click here

Contacts:
Gail Gallessich
805-893-7220

George Foulsham
805-893-3071

Copyright © UC Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Tongfang Global and QD Vision Partner to Bring Wide Color Gamut to Global Television Lines: Color IQTM quantum dots help boost company’s focus on superior color reproduction September 3rd, 2015

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

Physics

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Academic/Education

Sustainable nanotechnology center September 1st, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

Quantum Computing

A little light interaction leaves quantum physicists beaming August 25th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

New optical chip lights up the race for quantum computer August 14th, 2015

Quantum computing advance locates neutral atoms August 12th, 2015

Nanoelectronics

Turning clothing into information displays September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Materials/Metamaterials

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Sustainable nanotechnology center September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

Announcements

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Quantum nanoscience

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Seeing quantum motion August 30th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic