Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Progress Toward Quantum Computing

David Awschalom
David Awschalom

Abstract:
UCSB Scientists Look Beyond Diamond, Develop Road Map for Research on Other Materials with Defects Useful for Quantum Computing

Progress Toward Quantum Computing

Santa Barbara, CA | Posted on May 2nd, 2010

A team of scientists at UC Santa Barbara that helped pioneer research into the quantum properties of a small defect found in diamonds has now used cutting-edge computational techniques to produce a road map for studying defects in alternative materials.

Their new research is published in the online edition of the Proceedings of the National Academy of Sciences (PNAS), and will soon be published in the print edition of the journal. The findings may enable new applications for semiconductors -- materials that are the foundation of today's information technology. In particular, they may help identify alternative materials to use for building a potential quantum computer.

"Our results are likely to have an impact on experimental and theoretical research in diverse areas of science and technology, including semiconductor physics, materials science, magnetism, and quantum device engineering," said David D. Awschalom, UCSB physics professor and one of two lead investigators on this project. "Ironically, while much of semiconductor technology is devoted to eliminating the defects that interfere with how today's devices operate, these defects may actually be useful for future quantum technologies."

According to PNAS, the researchers have developed a set of screening criteria to find specific atomic defects in solids that could act as quantum bits (qubits) in a potential quantum computer. As a point of reference, they use a system whose quantum properties they themselves have recently helped to discern, the NV or nitrogen-vacancy center defect in diamond. This defect, which the team has shown can act as a very fast and stable qubit at room temperature, consists of a stray nitrogen atom alongside a vacancy in the otherwise perfect stacking of carbon atoms in a diamond.

Electrons trapped at the defect's center interact with light and microwaves in a predictable way, allowing information to be stored in and read out from the orientation of their quantum-mechanical spins.

The drawback to using diamond, however, is that the material is expensive and difficult to grow and process into chips. This raises the question of whether there may be defects in other materials that have similar properties and could perform equally well.

In this week's publication, the researchers enumerate specific screening criteria to identify appropriate defects in materials that could be useful for building a quantum computer. Experimental testing of all the potential candidates might take decades of painstaking research, explained Awschalom. To address this problem, the UCSB group employed advanced computational methods to theoretically examine the characteristics of potential defect centers in many different materials, providing a sort of road map for future experiments.

UCSB's Chris G. Van de Walle, professor of materials and one of the senior investigators on the project, remarked: "We tap into the expertise that we have accumulated over the years while examining ‘bad' defects, and channel it productively into designing ‘good' defects; i.e., those that have the necessary characteristics to equal or even outperform the NV center in diamond." This expertise is backed up by advanced theoretical and computational models that enable the reliable prediction of the properties of defects, a number of which are proposed and examined in the paper.

Awschalom added: "We anticipate this work will stimulate additional collaborative activities among theoretical physicists and materials engineers to accelerate progress toward quantum computing based on semiconductors."

Current computers are based on binary logic: each bit can be either "one" or "zero." In contrast, each qubit in a quantum computer is continuously variable between these two states and hence offers infinitely more possibilities to be manipulated and combined with other qubits to produce a desired computational result. "It has been well established that, in theory, quantum computers can tackle some tasks that are completely beyond the capabilities of binary computers," said Awschalom. "The challenge has been to identify real physical systems that can serve as qubits for future machines."

####

For more information, please click here

Contacts:
Gail Gallessich
805-893-7220

George Foulsham
805-893-3071

Copyright © UC Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Academic/Education

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

Quantum Computing

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

New invention revolutionizes heat transport February 1st, 2016

A new quantum approach to big data January 25th, 2016

Nanoelectronics

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

Materials/Metamaterials

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Quantum nanoscience

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic