Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Progress Toward Quantum Computing

David Awschalom
David Awschalom

Abstract:
UCSB Scientists Look Beyond Diamond, Develop Road Map for Research on Other Materials with Defects Useful for Quantum Computing

Progress Toward Quantum Computing

Santa Barbara, CA | Posted on May 2nd, 2010

A team of scientists at UC Santa Barbara that helped pioneer research into the quantum properties of a small defect found in diamonds has now used cutting-edge computational techniques to produce a road map for studying defects in alternative materials.

Their new research is published in the online edition of the Proceedings of the National Academy of Sciences (PNAS), and will soon be published in the print edition of the journal. The findings may enable new applications for semiconductors -- materials that are the foundation of today's information technology. In particular, they may help identify alternative materials to use for building a potential quantum computer.

"Our results are likely to have an impact on experimental and theoretical research in diverse areas of science and technology, including semiconductor physics, materials science, magnetism, and quantum device engineering," said David D. Awschalom, UCSB physics professor and one of two lead investigators on this project. "Ironically, while much of semiconductor technology is devoted to eliminating the defects that interfere with how today's devices operate, these defects may actually be useful for future quantum technologies."

According to PNAS, the researchers have developed a set of screening criteria to find specific atomic defects in solids that could act as quantum bits (qubits) in a potential quantum computer. As a point of reference, they use a system whose quantum properties they themselves have recently helped to discern, the NV or nitrogen-vacancy center defect in diamond. This defect, which the team has shown can act as a very fast and stable qubit at room temperature, consists of a stray nitrogen atom alongside a vacancy in the otherwise perfect stacking of carbon atoms in a diamond.

Electrons trapped at the defect's center interact with light and microwaves in a predictable way, allowing information to be stored in and read out from the orientation of their quantum-mechanical spins.

The drawback to using diamond, however, is that the material is expensive and difficult to grow and process into chips. This raises the question of whether there may be defects in other materials that have similar properties and could perform equally well.

In this week's publication, the researchers enumerate specific screening criteria to identify appropriate defects in materials that could be useful for building a quantum computer. Experimental testing of all the potential candidates might take decades of painstaking research, explained Awschalom. To address this problem, the UCSB group employed advanced computational methods to theoretically examine the characteristics of potential defect centers in many different materials, providing a sort of road map for future experiments.

UCSB's Chris G. Van de Walle, professor of materials and one of the senior investigators on the project, remarked: "We tap into the expertise that we have accumulated over the years while examining ‘bad' defects, and channel it productively into designing ‘good' defects; i.e., those that have the necessary characteristics to equal or even outperform the NV center in diamond." This expertise is backed up by advanced theoretical and computational models that enable the reliable prediction of the properties of defects, a number of which are proposed and examined in the paper.

Awschalom added: "We anticipate this work will stimulate additional collaborative activities among theoretical physicists and materials engineers to accelerate progress toward quantum computing based on semiconductors."

Current computers are based on binary logic: each bit can be either "one" or "zero." In contrast, each qubit in a quantum computer is continuously variable between these two states and hence offers infinitely more possibilities to be manipulated and combined with other qubits to produce a desired computational result. "It has been well established that, in theory, quantum computers can tackle some tasks that are completely beyond the capabilities of binary computers," said Awschalom. "The challenge has been to identify real physical systems that can serve as qubits for future machines."

####

For more information, please click here

Contacts:
Gail Gallessich
805-893-7220

George Foulsham
805-893-3071

Copyright © UC Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Physics

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

The quantum fridge: It all comes down to quantum physics: scientists at TU Wien have analyzed why some gases can be cooled down to extremely low temperatures February 2nd, 2016

Unconventional superconductivity near absolute zero temperature: Quantum critical point could be the reason for high temperature superconductivity February 2nd, 2016

Electrons and liquid helium advance understanding of zero-resistance: Study of electrons on liquid helium systems sheds light on zero-resistance phenomenon in semiconductors February 2nd, 2016

Academic/Education

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

BioSolar Extends Research Agreement With UCSB for Next Phase of Its Super Battery Technology: Development Effort to Continue Under the Supervision of Nobel Laureate, Dr. Alan Heeger January 13th, 2016

Quantum Computing

New invention revolutionizes heat transport February 1st, 2016

A new quantum approach to big data January 25th, 2016

Bismuth-based nanoribbons show 'topological' transport, potential for new technologies January 22nd, 2016

Mechanical quanta see the light January 20th, 2016

Nanoelectronics

Cornell researchers create first self-assembled superconductor February 1st, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Nanosheet growth technique could revolutionize nanomaterial production February 1st, 2016

Materials/Metamaterials

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Announcements

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Quantum nanoscience

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

Leti to Host Workshop on New Photonics Applications During SPIE Photonics West: Researchers also Will Present Four Invited Papers At Feb. 13-18 Conference, 14 Papers, Overall January 25th, 2016

Mechanical quanta see the light January 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic