Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers Demonstrate New Understanding of Nanotube Growth

A schematic illustration showing the formation of nanotubes driven by screw dislocations. Credit: Song Jin, University of Wisconsin-Madison
A schematic illustration showing the formation of nanotubes driven by screw dislocations. Credit: Song Jin, University of Wisconsin-Madison

Abstract:
Scientists take first step toward controlling the growth of nanomaterials without catalysts

Researchers Demonstrate New Understanding of Nanotube Growth

Arlington, VA | Posted on April 26th, 2010

Researchers at the University of Wisconsin-Madison recently made a significant first step toward understanding how to control the growth of the nanotubes, nanowires and nanorods needed for renewable energy and other technology applications.

These nanocrystalline materials, or nanomaterials, possess unique chemical and physical properties that can be used in solar energy panels, high energy density batteries, or better electronics. But, writing in the April 23 edition of the journal Science, a UW-Madison research team notes that the formation of these materials is often not well understood.

In particular, the question of how one-dimensional (1D) crystals grow sometimes without catalysts has been troublesome for scientists and engineers who need to produce large amounts of nanomaterials for specific applications. Working with zinc oxide, a common semiconductor widely used as a nanomaterial, assistant professor of chemistry Song Jin and his students demonstrated a new understanding of the subject by showing that nanotubes can be formed solely due to the strain energy and screw dislocations that drive their growth.

Screw dislocations are frequently observed defects in crystalline materials that can be thought of as a screw or a helical staircase that can drive fast 1D crystal growth. But these defects produce strain and stress during nanotube formation.

"The strain energy within dislocation-driven nanomaterials dictates if the material will be hollow or solid," explained Jin. "Tubes are formed when strain energy gets large enough and the center of the nanostructure hollows out to relieve the stress and strain."

Jin and his students investigated the possibility of dislocation-driven growth by carefully regulating the amount of available nanotube building blocks in a solution. Essentially, the team controllably oversaturated or supersaturated a vat of water with zinc salts to favor dislocation-driven growth and observe the formation of solid nanowires and hollow nanotubes.

This mechanism differs from previous growth strategies in that it doesn't require a catalyst or a template to produce nanotubes, but relies solely on a dislocation and the strain energy associated with it. A catalyst is usually another metal nanoparticle such as gold added to the growth process, which in turn drives 1D growth.

"Once we understand that the growth of these 1D nanomaterials can be driven by screw dislocations, we can see nanotubes and nanowires are related." said Jin. "Furthermore, we've shown that growth of nanotubes or nanowires without the use of a catalyst in solutions can be rationally designed by following a fundamental understanding of crystal growth theories and the concept of dislocation-driven nanomaterial growth.

"For more practical purposes, we think that this work provides a general theoretical framework for controlling solution nanowire/nanotube growth that can be applicable to many other materials," Jin said.

Growing large amounts of nanotubes or nanowires from water-based solutions without a catalyst would be much more cost-effective. "This could open up the exploitation of large scale/low cost solution growth for rational catalyst-free synthesis of 1D nanomaterials," said Jin.

The National Science Foundation's Division of Materials Research supports the work.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Bobbie Mixon, NSF (703) 292-8485

Program Contacts
Linda S Sapochak, NSF (703) 292-4932

Principal Investigators
Song Jin, University of Wisconsin-Madison (608) 262-1562

Related Websites
The Jin Group webpage: jin.chem.wisc.edu/

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Chemistry

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Iranians Find Novel Method for Processing Highly Pure Ceramic Nanoparticles August 12th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

Chip Technology

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

Immune cells get cancer-fighting boost from nanomaterials August 13th, 2014

Nanoelectronics

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Energy

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Picosun joins forces with IMEC for novel, industrial ALD applications August 25th, 2014

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Solar/Photovoltaic

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE