Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers Demonstrate New Understanding of Nanotube Growth

A schematic illustration showing the formation of nanotubes driven by screw dislocations. Credit: Song Jin, University of Wisconsin-Madison
A schematic illustration showing the formation of nanotubes driven by screw dislocations. Credit: Song Jin, University of Wisconsin-Madison

Abstract:
Scientists take first step toward controlling the growth of nanomaterials without catalysts

Researchers Demonstrate New Understanding of Nanotube Growth

Arlington, VA | Posted on April 26th, 2010

Researchers at the University of Wisconsin-Madison recently made a significant first step toward understanding how to control the growth of the nanotubes, nanowires and nanorods needed for renewable energy and other technology applications.

These nanocrystalline materials, or nanomaterials, possess unique chemical and physical properties that can be used in solar energy panels, high energy density batteries, or better electronics. But, writing in the April 23 edition of the journal Science, a UW-Madison research team notes that the formation of these materials is often not well understood.

In particular, the question of how one-dimensional (1D) crystals grow sometimes without catalysts has been troublesome for scientists and engineers who need to produce large amounts of nanomaterials for specific applications. Working with zinc oxide, a common semiconductor widely used as a nanomaterial, assistant professor of chemistry Song Jin and his students demonstrated a new understanding of the subject by showing that nanotubes can be formed solely due to the strain energy and screw dislocations that drive their growth.

Screw dislocations are frequently observed defects in crystalline materials that can be thought of as a screw or a helical staircase that can drive fast 1D crystal growth. But these defects produce strain and stress during nanotube formation.

"The strain energy within dislocation-driven nanomaterials dictates if the material will be hollow or solid," explained Jin. "Tubes are formed when strain energy gets large enough and the center of the nanostructure hollows out to relieve the stress and strain."

Jin and his students investigated the possibility of dislocation-driven growth by carefully regulating the amount of available nanotube building blocks in a solution. Essentially, the team controllably oversaturated or supersaturated a vat of water with zinc salts to favor dislocation-driven growth and observe the formation of solid nanowires and hollow nanotubes.

This mechanism differs from previous growth strategies in that it doesn't require a catalyst or a template to produce nanotubes, but relies solely on a dislocation and the strain energy associated with it. A catalyst is usually another metal nanoparticle such as gold added to the growth process, which in turn drives 1D growth.

"Once we understand that the growth of these 1D nanomaterials can be driven by screw dislocations, we can see nanotubes and nanowires are related." said Jin. "Furthermore, we've shown that growth of nanotubes or nanowires without the use of a catalyst in solutions can be rationally designed by following a fundamental understanding of crystal growth theories and the concept of dislocation-driven nanomaterial growth.

"For more practical purposes, we think that this work provides a general theoretical framework for controlling solution nanowire/nanotube growth that can be applicable to many other materials," Jin said.

Growing large amounts of nanotubes or nanowires from water-based solutions without a catalyst would be much more cost-effective. "This could open up the exploitation of large scale/low cost solution growth for rational catalyst-free synthesis of 1D nanomaterials," said Jin.

The National Science Foundation's Division of Materials Research supports the work.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Bobbie Mixon, NSF (703) 292-8485

Program Contacts
Linda S Sapochak, NSF (703) 292-4932

Principal Investigators
Song Jin, University of Wisconsin-Madison (608) 262-1562

Related Websites
The Jin Group webpage: jin.chem.wisc.edu/

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Chemistry

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Fun with Lego (molecules) January 28th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Possible Futures

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Using mathematics to improve human health February 3rd, 2016

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Academic/Education

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

BioSolar Extends Research Agreement With UCSB for Next Phase of Its Super Battery Technology: Development Effort to Continue Under the Supervision of Nobel Laureate, Dr. Alan Heeger January 13th, 2016

Chip Technology

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Electrons and liquid helium advance understanding of zero-resistance: Study of electrons on liquid helium systems sheds light on zero-resistance phenomenon in semiconductors February 2nd, 2016

Nanotubes/Buckyballs/Fullerenes

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Nanostructural Changes in Solar Cells to Increase Their Efficiency January 28th, 2016

FLEXcon shares insights on developments and safety guidelines in nanotechnology: FLEXcon hosted New England Nanotechnology Association event, discussing latest industry activities and innovations January 25th, 2016

Nanoelectronics

Cornell researchers create first self-assembled superconductor February 1st, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Nanosheet growth technique could revolutionize nanomaterial production February 1st, 2016

Announcements

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Energy

February 4th, 2016

Putting silicon 'sawdust' in a graphene cage boosts battery performance: Approach could remove major obstacles to increasing the capacity of lithium-ion batteries January 30th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

Putting silicon 'sawdust' in a graphene cage boosts battery performance: Approach could remove major obstacles to increasing the capacity of lithium-ion batteries January 30th, 2016

Teijin to Participate in Nano Tech 2016 January 21st, 2016

Superoxide gives lithium-air batteries a jolt January 15th, 2016

Solar/Photovoltaic

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Nanostructural Changes in Solar Cells to Increase Their Efficiency January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic