Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Can the Newest Form of Carbon Be Made to Bend, Twist and Roll?

Abstract:
Can graphene—a newly discovered form of pure carbon that may one day replace the silicon in computers, televisions, mobile phones and other common electronic devices—be made to bend, twist and roll?

By Kim McDonald

Can the Newest Form of Carbon Be Made to Bend, Twist and Roll?

La Jolla, CA | Posted on April 22nd, 2010

Physicists at UC San Diego and Boston University think so. In a paper published in the journal Physical Review B, the scientists say the propensity of graphene—a single layer of carbon atoms arranged in a honeycomb lattice— to stick to itself and form carbon "nanoscrolls" could be controlled electrostatically to form a myriad of new devices.

Unlike carbon nanotubes—cylindrical molecules of pure carbon with novel properties that have become the focus of much of the attention of new application in electronics and materials development—carbon nanoscrolls retain open edges and have no caps.

"As a result, nanoscrolls can change their shape and their inner and outer diameters, while nanotubes cannot," said Michael Fogler, an associate professor of physics at UCSD and the first author of the paper.

Working with Antonio Castro Neto, a physics professor at Boston University, and Francisco Guinea of the Institute of Materials Science in Madrid, the scientists proposed the construction of a device in which the electronic properties of graphene are used to roll and unroll the nanoscroll.

"The device we envision is a graphene nanoscroll that can be charged by current from a nearby electrode," said Fogler. "The more charged it becomes, the more the mutual electrostatic repulsion of electrons inside the scroll causes it to unwrap. So, the voltage on the electrode can control the diameter and the number of coils in the scroll."

"We show in this paper that the electrostatic control of nanoscrolls is very much feasible. The required voltages are in the practical range. Since graphene is so light, the wrapping and unwrapping would occur on a time scale of one-trillionth of a second. So, not only the degree of scrolling can be controlled, these nano-electromechanical devices will also be ultra-fast."

Fogler said such nanoscrolls could have a wide range of applications, such as actuators whose operation resembles the blinking of one's eyes, valves in lab-on-a-chip devices and even a form of electronic paper. Previously, other scientists attempted to build scroll "machines" using thin plastic films but they were either too rigid or too frail to work well. In contrast, nanoscrolls made of graphene, which is mechanically stronger than any other material known to man, would be robust, yet remain ultra-light and ultra-flexible. They would also conduct electricity more than a thousand times better than silicon.

Fogler said that the ideas to use electrical properties of graphene to modify its structure, or vice versa, are still quite new, and so the proposed devices may require some time to develop. In the near term, scientists hope that graphene, which is an optically transparent conductor of electricity, could be used to replace current liquid crystal displays that employ thin metal-oxide films based on indium, a rare metal that is becoming increasingly expensive and likely to be in short supply within a decade.

An advance copy of the journal article appeared online this week at: link.aps.org/doi/10.1103/PhysRevB.81.161408

The study was funded by grants from the National Science Foundation and U.S. Department of Energy.

####

Contacts:
Media Contact:
Kim McDonald
(858) 534-7572

Copyright © University of California, San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

NEMS

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Investigation of Mechanical Behavior of Heterogeneous Nanostructures in Iran July 13th, 2015

Weighing -- and imaging -- molecules one at a time April 28th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Academic/Education

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

JPK reports on the use of a NanoWizard® AFM-SECM system at the Université Paris Diderot looking at nanoscale biostructures August 18th, 2015

Rice, Penn State open center for 2-D coatings: National Science Foundation selects universities to develop atom-thin materials with industry partners August 13th, 2015

Nanotubes/Buckyballs/Fullerenes

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Revolutionary MIT-Developed Nanotechnology Company Showcases at CAMX in Dallas August 20th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Announcements

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Research partnerships

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic