Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Can the Newest Form of Carbon Be Made to Bend, Twist and Roll?

Abstract:
Can graphene—a newly discovered form of pure carbon that may one day replace the silicon in computers, televisions, mobile phones and other common electronic devices—be made to bend, twist and roll?

By Kim McDonald

Can the Newest Form of Carbon Be Made to Bend, Twist and Roll?

La Jolla, CA | Posted on April 22nd, 2010

Physicists at UC San Diego and Boston University think so. In a paper published in the journal Physical Review B, the scientists say the propensity of graphene—a single layer of carbon atoms arranged in a honeycomb lattice— to stick to itself and form carbon "nanoscrolls" could be controlled electrostatically to form a myriad of new devices.

Unlike carbon nanotubes—cylindrical molecules of pure carbon with novel properties that have become the focus of much of the attention of new application in electronics and materials development—carbon nanoscrolls retain open edges and have no caps.

"As a result, nanoscrolls can change their shape and their inner and outer diameters, while nanotubes cannot," said Michael Fogler, an associate professor of physics at UCSD and the first author of the paper.

Working with Antonio Castro Neto, a physics professor at Boston University, and Francisco Guinea of the Institute of Materials Science in Madrid, the scientists proposed the construction of a device in which the electronic properties of graphene are used to roll and unroll the nanoscroll.

"The device we envision is a graphene nanoscroll that can be charged by current from a nearby electrode," said Fogler. "The more charged it becomes, the more the mutual electrostatic repulsion of electrons inside the scroll causes it to unwrap. So, the voltage on the electrode can control the diameter and the number of coils in the scroll."

"We show in this paper that the electrostatic control of nanoscrolls is very much feasible. The required voltages are in the practical range. Since graphene is so light, the wrapping and unwrapping would occur on a time scale of one-trillionth of a second. So, not only the degree of scrolling can be controlled, these nano-electromechanical devices will also be ultra-fast."

Fogler said such nanoscrolls could have a wide range of applications, such as actuators whose operation resembles the blinking of one's eyes, valves in lab-on-a-chip devices and even a form of electronic paper. Previously, other scientists attempted to build scroll "machines" using thin plastic films but they were either too rigid or too frail to work well. In contrast, nanoscrolls made of graphene, which is mechanically stronger than any other material known to man, would be robust, yet remain ultra-light and ultra-flexible. They would also conduct electricity more than a thousand times better than silicon.

Fogler said that the ideas to use electrical properties of graphene to modify its structure, or vice versa, are still quite new, and so the proposed devices may require some time to develop. In the near term, scientists hope that graphene, which is an optically transparent conductor of electricity, could be used to replace current liquid crystal displays that employ thin metal-oxide films based on indium, a rare metal that is becoming increasingly expensive and likely to be in short supply within a decade.

An advance copy of the journal article appeared online this week at: link.aps.org/doi/10.1103/PhysRevB.81.161408

The study was funded by grants from the National Science Foundation and U.S. Department of Energy.

####

Contacts:
Media Contact:
Kim McDonald
(858) 534-7572

Copyright © University of California, San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

NEMS

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

Columbia engineers make world's smallest FM radio transmitter: Team demonstrates new application of graphene using positive feedback November 18th, 2013

Revisiting quantum effects in MEMS: New calculations shows that the influence of quantum effects on the operating conditions of nanodevices has, until now, been overestimated November 15th, 2013

Govt.-Legislation/Regulation/Funding/Policy

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Academic/Education

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Nanotubes/Buckyballs

Tiny carbon nanotube pores make big impact October 29th, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Research partnerships

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Molecular beacons shine light on how cells 'crawl' October 27th, 2014

New evidence for an exotic, predicted superconducting state October 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE