Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A Little Less Force: Making Atomic Force Microscopy Work for Cells

By placing a nanowire cantilever in the focus of a laser beam and detecting the resulting light pattern, scientists at the Molecular Foundry believe atomic force microscopy can be used to non-destructively image the surface of a biological cell (green-blue structure) and its proteins (shown in brown). (Illustration by Flavio Robles, Berkeley Lab Public Affairs)
By placing a nanowire cantilever in the focus of a laser beam and detecting the resulting light pattern, scientists at the Molecular Foundry believe atomic force microscopy can be used to non-destructively image the surface of a biological cell (green-blue structure) and its proteins (shown in brown). (Illustration by Flavio Robles, Berkeley Lab Public Affairs)

Abstract:
Atomic force microscopy, a tactile-based probe technique, provides a three-dimensional nanoscale image of a material by gliding a needle-like arm across the material's surface. The core of this AFM imaging workhorse is a cantilever with a sharp tip that deflects as it encounters undulations across a surface. Due to a minimum force required for imaging, conventional AFM cantilevers can deform or even tear apart living cells and other biological materials. While scientists have made strides in reducing this minimum force by making smaller cantilevers, the force is still too great to image cells with high resolution. Indeed, for imaging objects smaller than the diffraction limit of light—that is, nanometer dimensions—this approach hits a roadblock as the instrument can no longer sense minute forces.

A Little Less Force: Making Atomic Force Microscopy Work for Cells

Berkeley, CA | Posted on April 22nd, 2010

Now, however, scientists with the Molecular Foundry, a U.S. Department of Energy User Facility located at Berkeley Lab, have developed nano-sized cantilevers whose gentle touch could help discern the workings of living cells and other soft materials in their natural, liquid environment. Used in combination with a revolutionary detection mechanism, this new imaging tool is sensitive enough to investigate soft materials without the limitations present in other cantilevers.

"Whether we are considering biological systems or other complex, self-assembling nanostructures, this organization will be done in a liquid," says Paul Ashby, a Molecular Foundry staff scientist who led this research in the Foundry's Imaging and Manipulation of Nanostructures Facility. "If we have an investigative probe that excels in this environment, we could image individual proteins as they function on the cell surface."

Says Babak Sanii, a post-doctoral researcher in the Foundry, "Shrinking the cantilever down to nanoscale dimensions dramatically reduces the force it applies, but to monitor the movements of such a small cantilever, we needed a new detection scheme."

Rather than measuring the cantilever's deflection by bouncing a laser off it, Ashby and Sanii place the nanowire cantilever in the focus of a laser beam and detect the resulting light pattern, pinpointing the nanowire's position with high resolution. The duo say this work provides a launching pad for building a nanowire-based atomic force microscopes that could be used to study biological cells and model cellular components such as vesicles or bilayers. In particular, Ashby and Sanii hope to learn more about integrins, proteins found on the surface of cells that mediate adhesion and are part of signaling pathways linked to cell growth and migration.

"No present technique probes the assembly and dynamics of protein complexes in the cell membrane," adds Ashby. "A dynamic probe is the holy grail of soft matter imaging, and would help determine how protein complexes associate and disassociate."

"High sensitivity deflection detection of nanowires," by Babak Sanii and Paul D. Ashby, appears in Physical Review Letters and is available in Physical Review Letters online.

This work at the Molecular Foundry was supported by the DOE's Office of Science.

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

For more information, please click here

Contacts:
Aditi Risbud
(510)486-4861

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Nanomedicine

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Announcements

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Tools

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

Nanobiotechnology

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project