Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Revolutionary New Solution for Semiconductor & Nano Materials

Schematic of hybrid core-shell growth process
Schematic of hybrid core-shell growth process

Abstract:
University of Maryland researchers have created a completely new way to produce high quality semiconductor materials critical for advanced microelectronics and nanotechnology. Published in the March 26 issue of Science, their research is a fundamental step forward in nanomaterials science that could lead to significant advances in computer chips, photovoltaic cells, biomarkers and other applications, according to the authors and other experts.

Revolutionary New Solution for Semiconductor & Nano Materials

College Park, MD | Posted on April 4th, 2010

This is a major, major advance that shows it is possible to do something that was impossible to do before," said Massachusetts Institute of Technology Associate Professor Francesco Stellacci, whose own work focuses on discovery of new properties in nanoscale materials and the development of new nanofabrication schemes. "This research actually shows that it's possible at the nanoscale for two materials to happily coexist at their interface, two materials that would not coexist otherwise," explained Stellacci, who was not involved in the study.

Led by Min Ouyang, an assistant professor in the department of physics and the Maryland NanoCenter, the University of Maryland team has created a process that uses chemical thermodynamics to produce, in solution, a broad range of different combination materials, each with a shell of structurally perfect mono-crystal semiconductor around a metal core.

Ouyang and fellow researchers Jiatao Zhang, Yun Tang and Kwan Lee, say their method offers a host of benefits over the existing process, known as epitaxy, used to create single crystal semiconductors and related devices. The biggest advantage of their non-epitaxial process may be that it avoids two key constraints of epitaxy -- a limit on deposition semiconductor layer thickness and a rigid requirement for "lattice matching."

The constraints of the epitaxial method restrict the materials that can be formed with it. For example, authors Ouyang, Zhang, Tang and Lee note that attempts to use epitaxy to achieve the kind of hybrid core-shell nanostructures they demonstrate in their article have been unsuccessful.

"Our process should allow creation of materials that yield highly integrated multi-functional microelectronic components; better, more efficient materials for photovoltaic cells; and new biomarkers," said Ouyang, who noted his team is in the process of applying for a patent. "We envision for example that we can use this method to create new types of photovoltaic cells that are ten times more efficient in converting sunlight to electricity than current cells.

"Our method doesn't require a clean room facility and the materials don't have to be formed in a vacuum the ways those made by conventional epitaxy do," Ouyang said. "Thus it also would be much simpler and cheaper for companies to mass produce materials with our process."

Epitaxy is one of the cornerstones of contemporary semiconductor industry and nanotechnology. It has been considered the most affordable method of high quality crystal growth for many semiconductor materials including silicon-germanium, gallium nitride, gallium arsenide, indium phosphide and graphene.

A Quantum Leap

The new method also can be used to design and fabricate artificial quantum structures that help scientists understand and manipulate the basic physics of quantum information processing at the nanoscale, said Ouyang, noting that he and his team have a separate paper on the quantum science applications of this method that they expect to be published in the near future.

This work was supported by the Office of Naval Research, the National Science Foundation (NSF) and the Beckman Foundation. Facility support was from Maryland Nanocenter and its Nanoscale Imaging, Spectroscopy and Properties Laboratory, which is supported in part by the NSF as a Materials Research Science and Engineering Centers shared experiment facility.

"Nonepitaxial Growth of Hybrid Core-Shell Nanostructures with Large Lattice Mismatches," Jiatao Zhang, Yun Tang, Kwan Lee, Min Ouyang*, Science, March 26, 2010.



####

About University of Maryland
As the state's flagship university, the University of Maryland educates the most talented students from Maryland and beyond. We ranked 11th among all public U.S. universities and 37th worldwide in a recent international survey, and we were named one of the top 15 "green universities" in the country. Our faculty includes Nobel laureates and Pulitzer Prize winners. Our students win prestigious awards for their academic achievements and civic engagement, and our graduates enjoy successful careers in their chosen fields. In the past decade, our sports teams have won nine NCAA national championships. We embrace diversity, and we are taking advantage of our proximity to Washington, D.C., to educate tomorrow's leaders and address global challenges.

For more information, please click here

Contacts:
Lee Tune
301 405 4679


Science Contact
Min Ouyang
Assistant Professor
Department of Physics
University of Maryland, College Park
301-405-5985

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Oxford Instruments’ TritonTMXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Helium 'balloons' offer new path to control complex materials June 27th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Possible Futures

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Environmental Issues to Hamper Growth of Global Nanocomposites Market June 4th, 2015

Academic/Education

Oxford Instruments’ TritonTMXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

Chip Technology

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Building a better semiconductor: Research led by Michigan State University could someday lead to the development of new and improved semiconductors June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Nanomedicine

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Chivalrous Knight Does Pro Bono June 27th, 2015

Green Chemistry Methods Used in Iran to Produce Zinc Oxide Nanoparticles June 27th, 2015

Nanoelectronics

Exagan Raises €5.7 Million to Produce High-efficiency GaN-on-Silicon Power-switching Devices on 200mm Wafers: Leti-and-Soitec Spinout Focused on Becoming Leading European Source Of GaN Devices for Solar, Automotive, Telecoms and Infrastructure June 25th, 2015

Nanowires could be the LEDs of the future June 25th, 2015

Leti to Present Solutions to New Applications Using 3D Technologies at SEMICON West LetiDay Event, July 14: Leti Experts also Will Speak at TechXPOT Session on MEMS and STS Session on Lithography Cost-and-Productivity Issues Below 14nm June 22nd, 2015

Graphene heat-transfer riddle unraveled June 17th, 2015

Materials/Metamaterials

Green Chemistry Methods Used in Iran to Produce Zinc Oxide Nanoparticles June 27th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Dais Analytic Unveils New Version of Aqualyte Membrane Technology: Updates to the Basis of the Company's Industry-Changing Nanotechnology Designed to Strengthen Position in Global Air, Energy, and Water Markets June 26th, 2015

Iranian Researchers Synthesize Nanostructures with Controlled Shape, Structure June 25th, 2015

Announcements

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Oxford Instruments’ TritonTMXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Nanobiotechnology

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

Researchers first to show that Saharan silver ants can control electromagnetic waves over an extremely broad range of the electromagnetic spectrum—findings may lead to biologically inspired coatings for passive radiative cooling of objects June 19th, 2015

Cellulose from wood can be printed in 3-D June 17th, 2015

Research partnerships

June 29th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Building a better semiconductor: Research led by Michigan State University could someday lead to the development of new and improved semiconductors June 27th, 2015

Solar/Photovoltaic

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

Toward tiny, solar-powered sensors: New ultralow-power circuit improves efficiency of energy harvesting to more than 80 percent June 23rd, 2015

Quantum nanoscience

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

UAB researchers design the most precise quantum thermometer to date: The device would be capable of measuring the temperature of a cell's interior June 7th, 2015

Visualizing the 'matrix': App provides insight into the quantum world of coupled nuclear spins June 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project