Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Revolutionary New Solution for Semiconductor & Nano Materials

Schematic of hybrid core-shell growth process
Schematic of hybrid core-shell growth process

Abstract:
University of Maryland researchers have created a completely new way to produce high quality semiconductor materials critical for advanced microelectronics and nanotechnology. Published in the March 26 issue of Science, their research is a fundamental step forward in nanomaterials science that could lead to significant advances in computer chips, photovoltaic cells, biomarkers and other applications, according to the authors and other experts.

Revolutionary New Solution for Semiconductor & Nano Materials

College Park, MD | Posted on April 4th, 2010

This is a major, major advance that shows it is possible to do something that was impossible to do before," said Massachusetts Institute of Technology Associate Professor Francesco Stellacci, whose own work focuses on discovery of new properties in nanoscale materials and the development of new nanofabrication schemes. "This research actually shows that it's possible at the nanoscale for two materials to happily coexist at their interface, two materials that would not coexist otherwise," explained Stellacci, who was not involved in the study.

Led by Min Ouyang, an assistant professor in the department of physics and the Maryland NanoCenter, the University of Maryland team has created a process that uses chemical thermodynamics to produce, in solution, a broad range of different combination materials, each with a shell of structurally perfect mono-crystal semiconductor around a metal core.

Ouyang and fellow researchers Jiatao Zhang, Yun Tang and Kwan Lee, say their method offers a host of benefits over the existing process, known as epitaxy, used to create single crystal semiconductors and related devices. The biggest advantage of their non-epitaxial process may be that it avoids two key constraints of epitaxy -- a limit on deposition semiconductor layer thickness and a rigid requirement for "lattice matching."

The constraints of the epitaxial method restrict the materials that can be formed with it. For example, authors Ouyang, Zhang, Tang and Lee note that attempts to use epitaxy to achieve the kind of hybrid core-shell nanostructures they demonstrate in their article have been unsuccessful.

"Our process should allow creation of materials that yield highly integrated multi-functional microelectronic components; better, more efficient materials for photovoltaic cells; and new biomarkers," said Ouyang, who noted his team is in the process of applying for a patent. "We envision for example that we can use this method to create new types of photovoltaic cells that are ten times more efficient in converting sunlight to electricity than current cells.

"Our method doesn't require a clean room facility and the materials don't have to be formed in a vacuum the ways those made by conventional epitaxy do," Ouyang said. "Thus it also would be much simpler and cheaper for companies to mass produce materials with our process."

Epitaxy is one of the cornerstones of contemporary semiconductor industry and nanotechnology. It has been considered the most affordable method of high quality crystal growth for many semiconductor materials including silicon-germanium, gallium nitride, gallium arsenide, indium phosphide and graphene.

A Quantum Leap

The new method also can be used to design and fabricate artificial quantum structures that help scientists understand and manipulate the basic physics of quantum information processing at the nanoscale, said Ouyang, noting that he and his team have a separate paper on the quantum science applications of this method that they expect to be published in the near future.

This work was supported by the Office of Naval Research, the National Science Foundation (NSF) and the Beckman Foundation. Facility support was from Maryland Nanocenter and its Nanoscale Imaging, Spectroscopy and Properties Laboratory, which is supported in part by the NSF as a Materials Research Science and Engineering Centers shared experiment facility.

"Nonepitaxial Growth of Hybrid Core-Shell Nanostructures with Large Lattice Mismatches," Jiatao Zhang, Yun Tang, Kwan Lee, Min Ouyang*, Science, March 26, 2010.



####

About University of Maryland
As the state's flagship university, the University of Maryland educates the most talented students from Maryland and beyond. We ranked 11th among all public U.S. universities and 37th worldwide in a recent international survey, and we were named one of the top 15 "green universities" in the country. Our faculty includes Nobel laureates and Pulitzer Prize winners. Our students win prestigious awards for their academic achievements and civic engagement, and our graduates enjoy successful careers in their chosen fields. In the past decade, our sports teams have won nine NCAA national championships. We embrace diversity, and we are taking advantage of our proximity to Washington, D.C., to educate tomorrow's leaders and address global challenges.

For more information, please click here

Contacts:
Lee Tune
301 405 4679


Science Contact
Min Ouyang
Assistant Professor
Department of Physics
University of Maryland, College Park
301-405-5985

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

Possible Futures

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Academic/Education

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Chip Technology

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

A firefly's flash inspires new nanolaser light July 18th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GFs 22FDX technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Nanometrics to Announce Second Quarter Financial Results on August 1, 2017 July 14th, 2017

Nanomedicine

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Nanomedicine opens door to precision medicine for brain tumors July 12th, 2017

Nanoelectronics

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

A firefly's flash inspires new nanolaser light July 18th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GFs 22FDX technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Materials/Metamaterials

Carbon displays quantum effects July 13th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

ANU invention may help to protect astronauts from radiation in space July 3rd, 2017

Brookhaven Scientists Study Role of 'Electrolyte Gating' in Functional Oxide Materials July 3rd, 2017

Announcements

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanobiotechnology

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Nanomedicine opens door to precision medicine for brain tumors July 12th, 2017

Nature-inspired material uses liquid reinforcement: Rice U. nanoengineers create liquid-solid composites using clues from nature July 11th, 2017

Research partnerships

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GFs 22FDX technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Carbon displays quantum effects July 13th, 2017

Solar/Photovoltaic

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Making two out of one: FAU researchers have explained the mechanism behind a process that can increase the efficiency of organic solar cells July 12th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Quantum nanoscience

Carbon displays quantum effects July 13th, 2017

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project