Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A predilection for certain symmetries

Symmetry bears flowers: The Stuttgart-based researchers generate light patterns by superimposing several laser beams. Flower-shaped structures form in the laser patterns which act as a nucleus for order. They arise very rarely in the 7-fold pattern (bottom left) - therefore no materials with a 7-fold symmetry are found in nature. Image: Jules Mikhael, University of Stuttgart
Symmetry bears flowers: The Stuttgart-based researchers generate light patterns by superimposing several laser beams. Flower-shaped structures form in the laser patterns which act as a nucleus for order. They arise very rarely in the 7-fold pattern (bottom left) - therefore no materials with a 7-fold symmetry are found in nature. Image: Jules Mikhael, University of Stuttgart

Abstract:
Researchers discover why atoms in solids show a preference for certain structures

A predilection for certain symmetries

Munich | Posted on March 30th, 2010

Nature likes some symmetries, but dislikes others. Ordered solids often display a so-called 6-fold rotation symmetry. To achieve this kind of symmetry, the atoms in a plane surround themselves with six neighbours in an arrangement similar to that found in honeycombs. As opposed to this, ordered materials with 7-fold, 9-fold or 11-fold symmetries are never observed in nature. Researchers from the Max Planck Institute for Metals Research, the University of Stuttgart and the TU Berlin discovered the reason for this when they tried to impose a 7-fold symmetry on a layer of charged colloidal particles using strong laser fields: the emergence of ordered structures requires the presence of specific sites where the corresponding order nucleates. Indeed, such nuclei are present in large numbers in exactly those structures for which nature shows a preference. In contrast, they only arise sporadically in patterns with 7-fold symmetry. (Proceedings of the National Academy of Sciences, Week of March 29, 2010)

The process involved here sounds unwieldy, but is, in fact, quite simple: a material has a 6-fold rotation symmetry if the arrangement of its atoms remains unchanged when it is rotated by 60 degrees - one sixth of a circle. The atoms in metals often order themselves in this way. However, more complicated structures with 5-fold, 8-fold or 10-fold rotation symmetry also exist. "It is surprising that materials with 7-fold, 9-fold or 11-fold symmetry have not yet been observed in nature," says Clemens Bechinger, fellow at the Max Planck Institute for Metals Research and Professor at the University of Stuttgart: "This is all the more astonishing in view of the fact that patterns with any rotation symmetry can be drawn without difficulty on paper." The question is, therefore, whether such materials have simply been overlooked up to now or whether nature has an aversion to certain symmetries.

This is the question that Clemens Bechinger has been investigating with his colleagues. "The answer is of interest to us both from a fundamental point of view but also because it could be helpful for tailoring materials with novel properties for technical applications," explains the physicist. The characteristics of a material are generally very dependent on its rotation symmetry. Graphite and diamond, for example, both consist of carbon atoms and differ solely in their crystal symmetry.

To produce materials with 7-fold symmetry, which do not actually exist in nature, the researchers resorted to a special trick: they superimposed seven laser beams and thereby generated a light pattern with 7-fold symmetry. They then introduced a layer of colloidal particles approximately three micrometers in diameter into the laser field. The effect of the electromagnetic field of the light pattern on the particles is akin to the formation of a mountain landscape, in which they tend to gravitate to the valleys. The colloidal particles, which repel each other because of their electric charges, attempt, in turn, to form a 6-fold symmetrical structure.

The researchers raise the profile of the light landscape by gradually increasing the intensity of the lasers. In this way, they exert increasing pressure on the colloidal particles to form a 7-fold symmetry instead of a 6-fold one. "This enables us to ascertain the laser intensity up to which the particles do not adept the 7-fold order and retain their 6-fold symmetry," says Jules Mikhael, the doctoral student working on the project.

In the same way, the physicists subjected the particles to a 5-fold light lattice and observed a clear difference: the particles clearly avoid a 7-fold symmetry and assume the 5-fold symmetry at relatively low laser intensities. Therefore, nature's rejection of 7-fold symmetries is also demonstrated in the model system created by the researchers in Stuttgart.

"What is crucial, however, is that our experiment also uncovers the reason why the particles stubbornly refuse to form a 7-fold structure," notes Clemens Bechinger. When the physicists increase the laser intensity, the particles initially only assume a 7-fold symmetry in very isolated places. Only when the intensity is further increased does the order spread to the entire sample. The researchers identified certain structures in the light pattern as the starting point for the 7-fold symmetry. These consist of a central point of light, which is surrounded by a ring of other light points and is, therefore, strongly reminiscent of a flower blossom.

"In the light pattern with 5-fold symmetry we find around 100 times more of these flower-shaped centres than in that with the 7-fold pattern," explains Michael Schmiedeberg. The density of these nuclei clearly plays the crucial role. The higher the density, the less force the researchers must exert to generate structures of the corresponding rotation symmetry. In this case, low light intensity is sufficient for the relevant order to spread from the centre.

The differences in the densities of the flower-shaped nuclei alone also explains why 8-fold and 10-fold symmetries arise in nature but 9-fold and 11-fold ones do not. "The result is astonishing because it involves a simple geometric argument," says Bechinger: "It is completely independent on the special nature of the interaction between the particles, and applies, therefore, both to our colloidal systems and to atomic systems."

The experiments explain, first, why it is no coincidence that materials with certain symmetries are not found in nature. Second, they demonstrate a concrete way, in which such structures can be made artificially in colloidal systems - that is with the help of external fields. This could be useful for the production of photonic crystals with unusual symmetries in which, for example, individual layers of colloids with 7-fold rotation symmetry are stacked on top of each other. Photonic crystals consist of microstructures, which affect light waves in a similar way to that in which crystal lattices affect electrons. Due to the higher rotation symmetry, the optical characteristics of 7-fold photonic crystals would be less dependent on the angle of incidence of a beam of light than the existing photonic crystals with 6-fold symmetry.

In addition to this, materials with unconventional symmetries have other interesting characteristics, for example very low frictional resistance. As a result they can reduce the friction between sliding parts e.g. in engines when applied as thin surface coatings. "Overall the search for materials with unusual rotation symmetries is of considerable interest," says Clemens Bechinger: "Our results can help to identify the particular symmetries that are worth looking for."

[PH/ClB]

Related links:

[1] more about unconventional symmetries www.pi2.uni-stuttgart.de/contact/index.php?article_id=127

Original work:

Jules Mikhael, Michael Schmiedeberg, Sebastian Rausch, Johannes Roth, Holger Stark, and Clemens Bechinger

Proliferation of anomalous symmetries in colloidal monolayers subjected to quasiperiodic light fields Proceedings of the National Academy of Sciences early edition, March 29 to April 2


####

About Max Planck Society
The research institutes of the Max Planck Society perform basic research in the interest of the general public in the natural sciences, life sciences, social sciences, and the humanities. In particular, the Max Planck Society takes up new and innovative research areas that German universities are not in a position to accommodate or deal with adequately. These interdisciplinary research areas often do not fit into the university organization, or they require more funds for personnel and equipment than those available at universities. The variety of topics in the natural sciences and the humanities at Max Planck Institutes complement the work done at universities and other research facilities in important research fields. In certain areas, the institutes occupy key positions, while other institutes complement ongoing research. Moreover, some institutes perform service functions for research performed at universities by providing equipment and facilities to a wide range of scientists, such as telescopes, large-scale equipment, specialized libraries, and documentary resources.

For more information, please click here

Contacts:
Professor Clemens Bechinger
Physikalisches Institut,
University of Stuttgart
Tel.: +49 (0)711 685 65218

Copyright © Max Planck Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Academic/Education

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Discoveries

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Materials/Metamaterials

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Announcements

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Photonics/Optics/Lasers

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

MIPT physicists predict the existence of unusual optical composites March 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project