Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Rensselaer Researchers Secure $1 Million Grant To Develop Oil Exploration Game-Changer

Nikhil Koratkar
Nikhil Koratkar

Abstract:
Nanoengineered Coating Uses Naturally Occurring Water Deep in Earth to Power Underground Oil and Gas Sensors

Rensselaer Researchers Secure $1 Million Grant To Develop Oil Exploration Game-Changer

Troy, NY | Posted on March 27th, 2010

Rensselaer Polytechnic Institute Professor Nikhil Koratkar is leading a $1 million study to develop new coatings for nanosensors that could lead to more accurate and efficient oil exploration.

Koratkar and colleagues are investigating how the flow of water, steam, or certain gasses over surfaces coated with carbon nanotubes or graphene can generate small amounts of electricity. The researchers seek to explain this phenomenon — which has been observed but is not yet fully understood — and use their findings to create tiny self-powered devices that travel through naturally occurring cracks deep in the earth and can help uncover hidden pockets of oil and natural gas.

"Water and gases are naturally moving deep within crevices in the earth, so we are investigating the best way to harvest that energy and put it to use," said Koratkar, professor in the Department of Mechanical, Aerospace, and Nuclear Engineering in Rensselaer's School of Engineering. "It has been shown that the flow of water and gases over certain nanomaterials creates an electric charge, but we're still not quite sure why. Once we fully understand the reason, we should be able to optimize the process and create a practical, useful device."

The three-year study, funded by the Advanced Energy Consortium, is titled "Nanofluidic Power Generation Using One-Dimensional (Carbon Nanotube) and Two-Dimensional (Graphene) Nanomaterials."

Hydrocarbon exploration is an expensive process that involves drilling deep down in the earth to detect the presence of oil or natural gas. Koratkar said oil and gas companies would like to augment this process by sending out large numbers of nanoscale sensors into new and existing drill wells. These sensors would travel laterally through the earth, carried by the naturally occurring water and gas flowing through the network of cracks that exists underneath the earth's surface. Oil companies would no longer be limited to vertical exploration, and the data collected from the sensors would arm these firms with more information for deciding the best locations to drill.

A key challenge to realizing these nanosensors, Koratkar said, is that they are autonomous and therefore need to be self-powered. Recent studies show that the motion of water over carbon nanotubes creates small amounts of electricity—but far less than needed to power the sensors. Koratkar's team is investigating how to optimize this process and exploit it to generate electricity on the order of milliwatts. In addition to coating a nanosensor with carbon nanotubes, the team will also look at using coatings made from graphene, a single-atom-thick sheet of carbon atoms arranged like a nanoscale chain-link fence.

Conventional thinking is that free electrons on the surface of carbon nanotubes and graphene can interact with ions in the flowing water. The ions can drag the electrons in the flow direction, creating an electric current. It is curious, Koratkar said, that flowing steam over carbon nanotubes creates a voltage, even though steam does not contain ions—a mystery the new study plans to tackle. Additionally, his team will investigate how water flowing inside of carbon nanotubes, and inside of layered graphene, can be harnessed to create additional voltage.

"We don't fully understand everything about this process, but once we do, it should lead to exciting new possibilities for nanocoatings that can power sensors by harvesting energy from their environment," Koratkar said. "This should help the drilling companies locate and identify new pockets of oil and natural gas that have so far gone unnoticed."

Rensselaer will receive $700,000 of the grant, and $300,000 will go to researchers at Rice University. Koratkar's co-investigators are Yunfeng Shi, assistant professor in the Department of Materials Science and Engineering at Rensselaer; and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice.

####

About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute is the nation’s oldest technological university. The university offers degrees from five schools: Engineering; Science; Architecture; Humanities, Arts, and Social Sciences; and the Lally School of Management & Technology; as well as an interdisciplinary degree in Information Technology.

Institute programs serve undergraduates, graduate students, and working professionals around the world. The Institute’s long-standing reputation drew students from 39 states in addition to Washington, D.C., Puerto Rico, and 13 foreign countries in the fall of 2009.

Rensselaer offers more than 145 programs at the bachelor’s, master’s, and doctoral levels. Students are encouraged to work in interdisciplinary programs that allow them to combine scholarly work from several departments or schools. The university provides rigorous, engaging, interactive learning environments and campus-wide opportunities for leadership, collaboration, and creativity.

For more information, please click here

Contacts:
Michael Mullaney
Phone: (518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK’s NanoWizard AFM system is being used for cell studies in the Research Centre for Nanometer-scale Science & Advanced Materials at the Jagiellonian University in Krakow, Poland May 31st, 2016

Nanobiotix receives US$1m milestone payment from PharmaEngine: First patient injected with NBTXR3 in soft tissue sarcoma registration phase in Asia May 31st, 2016

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Nanobiotix establishes promising preclinical proof-of-concept in Immuno Oncology May 31st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Academic/Education

JPK’s NanoWizard AFM system is being used for cell studies in the Research Centre for Nanometer-scale Science & Advanced Materials at the Jagiellonian University in Krakow, Poland May 31st, 2016

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Announcements

JPK’s NanoWizard AFM system is being used for cell studies in the Research Centre for Nanometer-scale Science & Advanced Materials at the Jagiellonian University in Krakow, Poland May 31st, 2016

Nanobiotix receives US$1m milestone payment from PharmaEngine: First patient injected with NBTXR3 in soft tissue sarcoma registration phase in Asia May 31st, 2016

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Nanobiotix establishes promising preclinical proof-of-concept in Immuno Oncology May 31st, 2016

Energy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic