Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Rensselaer Researchers Secure $1 Million Grant To Develop Oil Exploration Game-Changer

Nikhil Koratkar
Nikhil Koratkar

Abstract:
Nanoengineered Coating Uses Naturally Occurring Water Deep in Earth to Power Underground Oil and Gas Sensors

Rensselaer Researchers Secure $1 Million Grant To Develop Oil Exploration Game-Changer

Troy, NY | Posted on March 27th, 2010

Rensselaer Polytechnic Institute Professor Nikhil Koratkar is leading a $1 million study to develop new coatings for nanosensors that could lead to more accurate and efficient oil exploration.

Koratkar and colleagues are investigating how the flow of water, steam, or certain gasses over surfaces coated with carbon nanotubes or graphene can generate small amounts of electricity. The researchers seek to explain this phenomenon — which has been observed but is not yet fully understood — and use their findings to create tiny self-powered devices that travel through naturally occurring cracks deep in the earth and can help uncover hidden pockets of oil and natural gas.

"Water and gases are naturally moving deep within crevices in the earth, so we are investigating the best way to harvest that energy and put it to use," said Koratkar, professor in the Department of Mechanical, Aerospace, and Nuclear Engineering in Rensselaer's School of Engineering. "It has been shown that the flow of water and gases over certain nanomaterials creates an electric charge, but we're still not quite sure why. Once we fully understand the reason, we should be able to optimize the process and create a practical, useful device."

The three-year study, funded by the Advanced Energy Consortium, is titled "Nanofluidic Power Generation Using One-Dimensional (Carbon Nanotube) and Two-Dimensional (Graphene) Nanomaterials."

Hydrocarbon exploration is an expensive process that involves drilling deep down in the earth to detect the presence of oil or natural gas. Koratkar said oil and gas companies would like to augment this process by sending out large numbers of nanoscale sensors into new and existing drill wells. These sensors would travel laterally through the earth, carried by the naturally occurring water and gas flowing through the network of cracks that exists underneath the earth's surface. Oil companies would no longer be limited to vertical exploration, and the data collected from the sensors would arm these firms with more information for deciding the best locations to drill.

A key challenge to realizing these nanosensors, Koratkar said, is that they are autonomous and therefore need to be self-powered. Recent studies show that the motion of water over carbon nanotubes creates small amounts of electricity—but far less than needed to power the sensors. Koratkar's team is investigating how to optimize this process and exploit it to generate electricity on the order of milliwatts. In addition to coating a nanosensor with carbon nanotubes, the team will also look at using coatings made from graphene, a single-atom-thick sheet of carbon atoms arranged like a nanoscale chain-link fence.

Conventional thinking is that free electrons on the surface of carbon nanotubes and graphene can interact with ions in the flowing water. The ions can drag the electrons in the flow direction, creating an electric current. It is curious, Koratkar said, that flowing steam over carbon nanotubes creates a voltage, even though steam does not contain ions—a mystery the new study plans to tackle. Additionally, his team will investigate how water flowing inside of carbon nanotubes, and inside of layered graphene, can be harnessed to create additional voltage.

"We don't fully understand everything about this process, but once we do, it should lead to exciting new possibilities for nanocoatings that can power sensors by harvesting energy from their environment," Koratkar said. "This should help the drilling companies locate and identify new pockets of oil and natural gas that have so far gone unnoticed."

Rensselaer will receive $700,000 of the grant, and $300,000 will go to researchers at Rice University. Koratkar's co-investigators are Yunfeng Shi, assistant professor in the Department of Materials Science and Engineering at Rensselaer; and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice.

####

About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute is the nation’s oldest technological university. The university offers degrees from five schools: Engineering; Science; Architecture; Humanities, Arts, and Social Sciences; and the Lally School of Management & Technology; as well as an interdisciplinary degree in Information Technology.

Institute programs serve undergraduates, graduate students, and working professionals around the world. The Institute’s long-standing reputation drew students from 39 states in addition to Washington, D.C., Puerto Rico, and 13 foreign countries in the fall of 2009.

Rensselaer offers more than 145 programs at the bachelor’s, master’s, and doctoral levels. Students are encouraged to work in interdisciplinary programs that allow them to combine scholarly work from several departments or schools. The university provides rigorous, engaging, interactive learning environments and campus-wide opportunities for leadership, collaboration, and creativity.

For more information, please click here

Contacts:
Michael Mullaney
Phone: (518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Academic/Education

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

Innovation Management and the Emergence of the Nanobiotechnology Industry July 1st, 2014

Albany NanoCollege Faculty Member Selected as Editor-in-Chief of the Prestigious Journal of Electronic Materials July 1st, 2014

Nanotubes/Buckyballs

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

Announcements

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE