Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Designer nanomaterials on-demand: Berkeley Scientists Report Universal Method for Creating Nanoscale Composites

Delia Milliron, of Berkeley Lab’s Molecular Foundry, led the development of a universal method by which designer nanomaterials can be created on-demand. (Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs)
Delia Milliron, of Berkeley Lab’s Molecular Foundry, led the development of a universal method by which designer nanomaterials can be created on-demand. (Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs)

Abstract:
Composites are combinations of materials that produce properties inaccessible in any one material. A classic example of a composite is fiberglass - plastic fibers woven with glass to add strength to hockey sticks or the hull of a boat. Unlike the well-established techniques for producing fiberglass and other macroscale composites, however, there aren't general schemes available for making nanoscale composites.

Designer nanomaterials on-demand: Berkeley Scientists Report Universal Method for Creating Nanoscale Composites

Berkeley, CA | Posted on March 23rd, 2010

Now, researchers at Berkeley Lab's Molecular Foundry, in collaboration with researcher at the University of California, Berkeley, have shown how nanocomposites with desired properties can be designed and fabricated by first assembling nanocrystals and nanorods coated with short organic molecules, called ligands. These ligands are then replaced with clusters of metal chalcogenides, such as copper sulfide. As a result, the clusters link to the nanocrystal or nanorod building blocks and help create a stable nanocomposite. The team has applied this scheme to more than 20 different combinations of materials, including close-packed nanocrystal spheres for thermoelectric materials and vertically aligned nanorods for solar cells.

"We're just starting to understand how combining materials on the nanoscale can open up new possibilities for electronic properties and efficient energy technologies," said Delia Milliron, Director of the Inorganic Nanostructures Facility at the Molecular Foundry. "This new process for fabricating inorganic nanocomposites gives us unprecedented ability to tune composition and control morphology."

The researchers anticipate demand from users seeking this latest addition to the Foundry's arsenal of materials synthesis capabilities, as this mix-and-match approach to nanocomposites could be used in an infinite list of applications, including materials for such popular uses as battery electrodes, photovoltaics and electronic data storage.

"The beauty of our method is not just the flexibility of compositions that can be achieved, but the ease with which this can be done. No specialized equipment is required, a variety of substrates can be used and the process is scalable," said Ravisubhash Tangirala, a Foundry post-doctoral researcher working with Milliron.

A paper reporting this researcher titled, "Modular inorganic nanocomposites by conversion of nanocrystal superlattices," appears in the journal Angewandte Chemie International Edition and is available in Angewandte Chemie International Edition online. Co-authoring the paper with Milliron and Tangirala were Jessy Baker and Paul Alivisatos.

Portions of this work at the Molecular Foundry were supported by DOE's Office of Science.

The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

For more about Berkeley Lab's Molecular Foundry visit the Website at foundry.lbl.gov/

For more about the research of Delia Milliron, visit the Website at www.lbl.gov/msd/investigators/investigators_all/milliron_investigator.html

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Visit our website at www.lbl.gov

For more information, please click here

Contacts:
Aditi Risbud
(510)486-4861

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Academic/Education

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

Innovation Management and the Emergence of the Nanobiotechnology Industry July 1st, 2014

Memory Technology

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

6TH CEA-LETI WORKSHOP ON INNOVATIVE MEMORY TECHNOLOGIES includes invited talks by Infineon, IBM, Schlumberger, Thales, Cisco and STMicroelectronics: June 24 Event to Explore NVM Application Horizons from Automotive to Oil & Gas: Responses from Innovative Technologies & Design June 12th, 2014

Materials/Metamaterials

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

From Narrow to Broad July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Energy

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

From Narrow to Broad July 30th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Research partnerships

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Solar/Photovoltaic

From Narrow to Broad July 30th, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE