Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Strength is shore thing for sea shell scientists

Abstract:
Scientists have made synthetic ‘sea shells' from a mixture of chalk and polystyrene cups - and produced a tough new material that could make our homes and offices more durable.

Strength is shore thing for sea shell scientists

UK | Posted on March 10th, 2010

A team of materials scientists and chemists have taken inspiration from sea shells found on the beach to create a composite material from dissimilar ‘ingredients'.

Their technique could be used to make ceramics with high resistance to cracking - which could in turn be used in crack-resistant building materials and bone replacements.

Writing in the journal Advanced Materials, scientists from The University of Manchester and The University of Leeds report that they have successfully reinforced calcium carbonate, or chalk, with polystyrene particles that are used to make drinks cups.

They have developed an effective method of combining calcite crystals with polystyrene particles - and have found this makes the material more ductile compared to its original brittle form.

They report that the polystyrene also acts as a toughening agent, assisting the prevention of the growth of cracks.

Scientists also observed that when the reinforced material cracked, the polymer lengthened within the cracks - a well-known mechanism for absorbing energy and enhancing toughness.

Researchers say their method allows the properties of the new material to be tweaked by selecting particles of different shapes, sizes and composition.

Dr Stephen Eichhorn from The School of Materials at The University of Manchester, said: "The mechanical properties of shells can rival those of man-made ceramics, which are engineered at high temperatures and pressures. Their construction helps to distribute stress over the structure and control the spread of cracks.

"Calcium carbonate is the main ingredient of chalk, which is very brittle and breaks easily when force is applied. But shells are strong and resistant to fracturing, and this is because the calcium carbonate is combined with proteins which bind the crystals together, like bricks in a wall, to make the material stronger and sometimes tougher.

"We have replicated nature's addition of proteins using polystyrene, to create a strong shell-like structure with similar properties to those seen in nature.

"Further research and testing is still needed but our research potentially offers a straightforward method of engineering new and tough chalk-based composite materials with a wide range of useful applications."

The research was funded by grants from the Engineering and Physical Sciences Research Council (EPSRC) and was conducted in collaboration with Professor Fiona Meldrum in the School of Chemistry at the University of Leeds.

####

About University of Manchester
The University of Manchester has an exceptional record of generating and sharing new ideas and innovations.

Many of the advances of the 20th century began at the University, such as the work by Rutherford leading to the splitting of the atom and the developments of the world's first modern computer in 1948.

Today, we are one of the world's top centres for biomedical research, leading the search for new treatments for life-threatening diseases. We are also at the forefront of new discoveries in science and engineering.

For more information, please click here

Contacts:
Alex Waddington
Media Relations Officer
The University of Manchester
Tel 0161 275 8387

Copyright © University of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Possible Futures

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Materials/Metamaterials

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Construction

New flexible material can make any window 'smart' August 23rd, 2016

Cement design should take into account the water confined in the smallest pores: A researcher at the UPV/EHU-University of the Basque Country is participating in the study of the stresses of confined water in the micropores of cement at extreme temperatures August 11th, 2016

Nothing -- and something -- give concrete strength, toughness: Rice University scientists show how voids, particles sap energy from cracks August 8th, 2016

Lucintel identifies and prioritizes opportunities for alumina trihydrate (ATH) fillers in the global composites industry August 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic