Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotube Thermocells Hold Promise For Converting Heat Waste To Energy

Baratunde Cola
Baratunde Cola

Abstract:
A study published in the American Chemical Society's journal Nano Letters reveals that thermocells based on carbon nanotube electrodes might eventually be used for generating electrical energy from heat discarded by chemical plants, automobiles and solar cell farms.

Nanotube Thermocells Hold Promise For Converting Heat Waste To Energy

Atlanta, GA | Posted on March 3rd, 2010

The research was a joint collaboration between Baratunde Cola, assistant professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech, and an international team of researchers from the U.S., Australia, China, India and the Philippines.

Cola, director of Georgia Tech's NanoEngineered Systems and Transport Research Group (NEST), described the study as a breakthrough in efficiently harvesting electrical energy from various sources of exhaust or wasted heat.

"Our NEST Lab was fortunate to team with Dr. Ray Baughman's NanoTech Institute at UT Dallas and Dr. Gordon Wallace's Intelligent Polymer Research Institute in Wollongong, Australia, in the final year of a long collaboration that solved key technical problems," he said. "We brought fresh eyes, as well as our knowledge and experience with heat transfer engineering from the nanoscale to the scale of practical devices to the problem, which provided a key missing link. The team will together work to enable additional breakthroughs that are required for this technology to reach its full commercial potential."

Efficiently harvesting the thermal energy currently wasted in industrial plants or along pipelines could also create local sources of clean energy that in turn could be used to lower costs and shrink an organization's energy footprint.

The new thermocells use nanotube electrodes that provide a threefold increase in energy conversion efficiency over conventional electrodes.

One of the demonstrated thermocells looks just like the button cell batteries used in watches, calculators and other small electronics. One key difference, however, is that these new thermocells can continuously generate electricity, instead of running down like a battery. The research netted other thermocells, as well, including electrolyte-filled, textile-separated nanotube sheets that can be wrapped around pipes carrying hot waste streams from manufacturing or electrical power plants. The temperature difference between the pipe and its surroundings produces an electrochemical potential difference between the carbon nanotube sheets, which thermocells utilize to generate electricity.

The research team estimates that multi-walled carbon nanotubes in large thermocells could eventually produce power at a cost of about $2.76 per watt from freely available waste energy, compared with a cost of $4.31 per watt for solar cells, which can only be used when the sun is shining. On a smaller scale, button cell-sized thermocells could be used to power sensors or electronic circuits.

The new thermocells take advantage of the exceptional electronic, mechanical, thermal and chemical properties of carbon nanotubes. The nanotubes' giant surface area and unique electronic structure afforded by their small diameter and nearly one-dimensional structure offer high current densities, which enhance the output of electrical power and the efficiency of energy harvesting.

"Georgians have worked with state support, and in partnership with initiatives such as the Strategic Energy Institute at Georgia Tech, to realize significant gains in renewable energy production," Cola said. "But to become a leading energy state, we must increasingly explore new ways to extract and utilize all forms of energy. Harvesting waste heat as electricity is one direction our NEST Lab takes with international partners to help provide increased renewable energy options for Georgia and the world."

This research was sponsored by the Office of Naval Research, the National Science Foundation, The Welch Foundation and the Australian Research Council.

Cola recently received the 2009 Defense Advanced Research Projects Agency (DARPA) Young Faculty Award for his work on solar energy conversion. As director of the NEST Lab, his research focuses on realizing the benefits of nanoscience in applications related to waste thermal energy harvesting, solar energy conversion, and thermal management of electronics and energy systems.

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's premier research universities. Ranked seventh among U.S. News & World Report's top public universities, Georgia Tech's more than 20,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and minority engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

For more information, please click here

Contacts:
Don Fernandez
404-894-6016

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

Possible Futures

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Announcements

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Alliances/Trade associations/Partnerships/Distributorships

Thomas Swan and NGI announce unique partnership July 28th, 2016

Starpharma initiates new DEPô drug delivery program with AstraZeneca July 27th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic